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Abstract 

Both human listeners and machines need to adapt their sound 

categories whenever a new speaker is encountered. This 

perceptual learning is driven by lexical information. The aim of 

this paper is two-fold: investigate whether a deep neural 

network-based (DNN) ASR system can adapt to only a few 

examples of ambiguous speech as humans have been found to 

do; investigate a DNN’s ability to serve as a model of human 

perceptual learning. Crucially, we do so by looking at 

intermediate levels of phoneme category adaptation rather than 

at the output level. We visualize the activations in the hidden 

layers of the DNN during perceptual learning. The results show 

that, similar to humans, DNN systems learn speaker-adapted 

phone category boundaries from a few labeled examples. The 

DNN adapts its category boundaries not only by adapting the 

weights of the output layer, but also by adapting the implicit 

feature maps computed by the hidden layers, suggesting the 

possibility that human perceptual learning might involve a 

similar nonlinear distortion of a perceptual space that is 

intermediate between the acoustic input and the phonological 

categories. Comparisons between DNNs and humans can thus 

provide valuable insights into the way humans process speech 

and improve ASR technology. 

Index Terms: phoneme category adaptation, human 

perceptual learning, deep neural networks, visualization 

1. Introduction 

Although the algorithms and functions computed by humans 

and machines in order to recognize speech are most likely 

different due to differences in the hardware between humans 

and machines, at the top level (also referred to as the 

computational level by [1]) both humans and machines carry 

out the same process, i.e., the recognition of words from the 

speech signal [2]. Consequently, comparing humans and 

machines on the same task can provide valuable insights into 

the way humans process speech and can improve automatic 

speech recognition (ASR) technology [3][4][5]. Knowledge 

about human speech processing has been used to improve ASR 

technology, e.g., in the creation of the acoustic features used in 

ASR systems (e.g., MFCCs [6], PLPs [7]), and to change the 

underlying approach to ASR, e.g., template-based approaches 

to ASR (e.g., [8]) are based on the episodic theory of human 

speech processing [9]. Conversely, ASR techniques have been 

used to investigate psycholinguistic questions regarding human 

speech processing: they have been successfully used in a 

speech-based computational model to test a theory about the use 

of fine-grained durational information in human speech 

processing [10], and to verify the hypothesis that infant-directed 

speech is easier to learn than adult-directed speech [11]. Here 

we aim to pursue both directions, and focus on the process of 

perceptual learning.  

Perceptual learning is the temporary or more permanent 

adaptation of sound categories after exposure to deviant speech, 

in a manner which includes the deviant sounds into pre-existing 

sound categories, thereby improving intelligibility of the speech 

(see for a review [12]). Perceptual learning is crucial for both 

human and automatic speech processing as the listener, whether 

human or machine, needs to adapt its sound categories 

whenever, e.g., a new speaker, channel condition, dialect or 

speaking style is encountered. Humans have been shown to 

rapidly change sound category boundaries to include deviant 

sounds [13-16] after hearing only a few instances of the deviant 

sounds [17][18]. ASR systems, on the other hand, adapt to a 

new speaker and new listening conditions using both short-time 

adaptation algorithms (e.g., fMLLR [19]) and longer-term 

adaptation techniques (e.g., DNN weight training [20]). In both 

cases, lexical knowledge about the word in which the deviant 

sound occurs is crucial [12][13] to guide the listener in 

interpreting the ambiguous sounds. ASR adapts correctly if it 

correctly recognizes the word in which the deviant sound occurs 

(or if a correct word label is provided), and incorrectly 

otherwise.  Humans adapt if there is only one interpretation of 

the deviant sound that renders the word intelligible; if multiple 

interpretations are possible, then adaptation does not occur.  

We aim to answer the question whether DNNs can adapt to 

ambiguous speech as rapidly as human listeners; if they are 

shown to have this ability, then we hope to visualize the 

mechanism by which the DNNs perform this adaptation, in 

search of intermediate representations that might have 

correlates in human perceptual adaptation. Specifically, we 

investigate the adaptation of phoneme categories to include an 

ambiguous sound in between an [l] and [ɹ] sound after exposure 

to this ambiguous sound [l/ɹ], a process also referred to as 

lexical retuning [13] in the psycholinguistic literature. We use 

an experimental set-up that mimics that of the human listening 

experiment [16] to which we will compare the DNNs’ 

performance. Crucially, when investigating the DNNs’ ability 

of lexical retuning, we will not only look at the output level but 

rather at intermediate levels of phoneme category adaptation in 

the DNNs by calculating the average difference between the 

activations of the hidden nodes in response to [l], [ɹ], and 

ambiguous [l/ɹ] sounds, respectively, and by visualizing the 

activations of the hidden nodes in response to each training 

token. The proposed methodology opens up the ‘black box’ of 

the DNNs [21]. 



Many factors about the mechanisms underlying perceptual 

learning are clear (for a review, [12]). However, what is still 

unclear is what actually happens during perceptual learning to 

the phoneme categories in the brain. This is not easily observed 

(neuroimaging experiments have not yet demonstrated 

sufficient spatial resolution to monitor changes correlated with 

lexical retuning; psycholinguistic experiments can demonstrate 

the classification effects of lexical retuning, but have not yet 

been able to discriminate among hypotheses about the 

underlying cognitive representations). As a second aim, 

therefore, we propose to use the visualizations of the hidden 

node activations of DNNs carrying out the same task as human 

listeners to make suggestions about what might be happening 

in the human brain during perceptual learning.  

2. Methodology 

2.1. Lexical retuning in human speech processing 

In a typical human perceptual learning experiment, listeners are 

first exposed to deviant, new speech (sounds), after which a test 

phase follows to investigate the influence of the deviant, new 

speech on the sound categories. Here, we base our experimental 

set-up on the lexical retuning paradigm [12][13][16]. In a 

lexical retuning paradigm, two groups of listeners are tested. 

Using the experiment from which we take our stimuli, [16], as 

an example: one group of Dutch listeners was exposed to an 

ambiguous [l/ɹ] in [l]-final words such as appel (Eng: apple; 

where appel is an existing Dutch word and apper is not; 

ambiguous L (AmbL) group). Another group of (Dutch) 

listeners was exposed to the exact same ambiguous [l/ɹ] sound 

but then in [ɹ]-final words, e.g., wekker (Eng: alarm clock; 

where wekker is a Dutch word, wekkel is not; ambiguous R 

(AmbR) group). After exposure to words containing the 

ambiguous sound, both groups of listeners are tested on the 

same continuum of ambiguous sounds from more [l]-like 

sounds to more [ɹ]-like sounds for which they have to indicate 

whether the heard sound is an [l] or an [ɹ]. Percentage [ɹ] 

responses for the continuum of ambiguous sounds for the two 

listener groups are measured. The results consistently show that 

listeners exposed to [l/ɹ] in [ɹ]-final words give significantly 

more [ɹ] responses than listeners exposed to the exact same [l/ɹ] 

sounds in [l]-final words. This difference between the group is 

referred to as the lexical retuning effect, and shows that listeners 

have retuned their phoneme category boundaries to include the 

deviant sound into their pre-existing phone category of [ɹ] or 

[l], respectively. 

2.2. Experimental set-up 

To mimic or create a Dutch listener, we first train a baseline 

DNN using read speech from the Spoken Dutch Corpus (CGN; 

[22]), which amounts to 551,624 words spoken by 324 unique 

speakers for a total duration of approximately 64 hours of 

speech. The training data was split into a training (80% of the 

full data set), validation (10%) and test set (10%) with no 

overlap in speakers.  

Subsequently, this baseline model is retrained using the 

acoustic stimuli from the human perception experiment [16]. To 

mimic the two listener groups, we used two different 

configurations of the stimulus/training set (also referred to as 

lexical retuning set), resulting in two different retrained models. 

The stimuli consist of 200 Dutch words produced by a female 

Dutch speaker in isolation: 40 words with final [ɹ], 40 words 

with final [l], and 120 ‘distractor’ words with no [l] and [ɹ]. For 

the 40 [l]-final words and the 40 [ɹ]-final words, versions also 

existed in which the final [l] or [ɹ] was replaced by the 

ambiguous [l/ɹ] sound. To mimic the two human listener 

groups, we trained:  

• Amb(iguous)L model: trained on the 120 distractor words, 

the 40 [ɹ]-final words, and the 40 [l]-final words in which 

the [l] was replaced by the ambiguous [l/ɹ]. 

• Amb(iguous)R model: trained on the 120 distractor words, 

the 40 [l]-final words, and the 40 [ɹ]-final words in which 

the [ɹ] was replaced by the ambiguous [l/ɹ]. 

We expect to see differences specifically in the [l] and [ɹ] 

categories between the AmbL and AmbR models. In order to 

investigate the effect of retraining with the additional speech 

and particularly the ambiguous sounds, the AmbL and AmbR 

models will also be compared with a new baseline model, which 

is trained on all 200 natural words, without ambiguous sounds. 

2.3. Model architecture 

All experiments used a fully-connected, feedforward DNN with 

five hidden layers, 1024 nodes/layer. The output softmax layer 

had a dimension of 39 nodes, corresponding to the 39 phone 

categories of CGN. The network was trained on CGN using 

rectified linear (ReLU) nonlinearities on all hidden nodes, then 

re-trained for one epoch on CGN using logistic sigmoid 

nonlinearities. The sigmoid nonlinearity was retained during 

lexical retuning. CGN training used the Adam optimizer; the 

network was trained to a validation set frame error rate of 

65.10%.  Lexical retuning was performed using 50 epochs of 

stochastic gradient descent, with a learning rate of 0.00001, no 

momentum, and no decay. 

2.4. I-vector representation for visualization 

In order to model and visualize the information present in the 

hidden layers, we applied a discrete version of I-vector 

representation to the hidden node activations. The purpose of 

using the I-vector framework is to capture the acoustic 

variability and model the behavior of the neural responses of 

the DNNs. This modeling will allow us to visualize the different 

clusters the network learned. The goal is to make a link between 

the representations learned by the I-vector based DNN model 

and the perceptual learning experiment. The discrete I-vector is 

computed by first normalizing the hidden node activations 

(after the sigmoid nonlinearity), so that for any given frame, in 

any given hidden layer, all of the node activations sum to one 

[23]. The normalized activations are then summed over each 

phone segment determined by the forced alignment, resulting 

in a non-negative 1024-dimensional vector whose L1 norm is 

equal to the number of frames in the segment. The I-vector 

representation is a non-negative factor analysis (NFA) of the 

1024-dimensional segment summary vectors [23][24]. The 

purpose of this modeling is to represent the DNN responses for 

a given phone (or speech segment) as a shift from the average 

responses of all the phones for a given hidden layer. This shift 

can be modeled as follow: 

M=m+Tw 

where M is the 1024-dimensional segment summary vector, 

and m is the average across all segments in the corpus. The 

matrix T models the most important non-negative factors of 

variability in the DNN’s reactions to the set of phone segments. 

The I-vector w describes the best segment dependent offset 

within the span of the subspace defined by matrix T. The matrix 

T is trained using an EM-Like algorithm [24]. This framework 

has been used to visualize the language clusters that emerge in 



the hidden-layer I-vectors of a language identification DNN 

[23]. In this paper, we used the same modeling technique to 

visualize the clusters of the studied phones. 

3. Results 

We investigated the DNN’s perceptual learning ability using 

three measures. First, we investigate the DNNs’ classification 

accuracy, and particularly we investigate whether the AmbR 

model gave more [ɹ] responses than the AmbL model, similar 

to the lexical retuning effect found in human listeners. Second, 

to check whether retraining with the ambiguous sounds resulted 

in a shift of the phoneme categories in the hidden layers, rather 

than a shift in the output layer (which would be comparable to 

the decision making step in humans), we investigate whether 

the DNNs show adaptation of the phone categories, similar to 

what has been found for humans [14]. We do so by calculating 

the average difference between the activations of the hidden 

nodes to the [l] and [ɹ] sounds and the ambiguous sounds, 

respectively, and by visualizing the hidden nodes’ activations.  

3.1. Phoneme classification 

Table 1 shows the classification results. There is no separate 

test set; these are classification rates on the same dataset that 

was used to adapt the network, therefore it is not surprising that 

the network correctly labels almost all of the sounds on which 

it has been adapted. Since we are primarily interested in the [l], 

[ɹ], and ambiguous [l/ɹ] sound, we only report those. The 

baseline model showed high performance in the classification 

for the [l] and [ɹ] sounds. Interestingly, the baseline system 

classified the [l/ɹ] sound as [l] almost half of the time and also 

as [ɹ] a few times. The AmbL model had a high accuracy in the 

classification of the [ɹ]; however, it did not classify the [l] 

correctly. The lexical retuning dataset contains no labeled 

examples of a natural [l]; apparently, in this case, the model has 

learned the retuning data so well that it has forgotten what a 

natural [l] sounds like. On the other hand, the network has 

correctly learned to label the [l/ɹ] sounds as [l], indicating 

‘perceptual learning’ by the AmbL system. The AmbR model 

had perfect classification of [l], and it has correctly learned to 

classify the [l/ɹ] sound as [ɹ], so we can say that the AmbR 

model also shows perceptual learning. Unlike AmbL, the 

AmbR model has not forgotten what a natural [ɹ] sounds like: it 

classifies natural [ɹ] tokens correctly in 29 out of 40 cases. 

3.2. Average distances between phoneme categories 

In order to explore the effect of lexical retuning on the hidden 

layers of the neural network, we began by calculating the inter-

category distances at each hidden layer of the DNNs.  The 1024-

dimensional segment vectors were first re-normalized, so that 

each vector sums to one. The Euclidean distance was calculated 

between each ambiguous segment and each [l] segment, and 

was averaged over all pairs to compute an average [l]-to-[l/ɹ] 

distance; the same procedure was used to calculate an average 

[ɹ]-to-[l/ɹ] distance. The ratio of these two distances, then, was 

taken as a single measure of the degree to which lexical re-

tuning has modified the feature representations at each of the 

five hidden layers and the soft-max layer (layer 5) of the DNN. 

Reasonable expectations include: 

a. This ratio should be similar across all three models at 

layer 0.  Layer 0, in our notation, is the first hidden layer 

of the network, not the acoustic input spectrum; but as the 

first hidden layer, it is closest to the spectrum, and likely 

to be least affected by lexical retuning. 

Table 1. Classification results on the [l], [ɹ], and [l/ɹ] 

training tokens for the three models. Correct classification in 

boldface. 

Sound 

presented 

Sound(s) classified (%) 

Baseline, retrained model  

[l] l(97.6), m(3.4) 

[ɹ] ɹ(95.0), sil(5.0) 

[l/ɹ] l(46.9), sil(23.5), ə(19.8), ɹ(8.6), ɛi (1.2) 

AmbL model 

[l] o(78.0), ɔ(10.4), sil(2.4), e(2.4), ɛi (2.4), øː(2.4) 

[ɹ] ɹ(87.5), e(7.5), ʌu(2.5), ɛi(2.5) 

[l/ɹ] l(81.5), ə(12.3), ə(2.5), ɛi(2.5), t(1.2) 

AmbR model 

[l] l(97.6), sil(3.4) 

[ɹ] ɹ(72.5), ə(15.0), sil(10.0), t(2.5) 

[l/ɹ] ɹ(88.9), sil(6.2), ə(4.9) 

 

Table 2. Ratio of distance(learned,l)/distance(learned,r) for 

the three models calculated using the posterior probabilities 

of the hidden nodes. 

Model Layer number 

0 1 2 3 4 5 

Baseline 1.112 1.135 1.085 1.085 1.031 0.931 

AmbL 1.110 1.124 1.118 1.114 1.003 0.963 

AmbR 1.149 1.167 1.214 1.274 1.284 2.280 

 

b. For model 'L', this ratio should become smaller for higher 

layers (the distance from [l/ɹ] to [l] should be smaller than 

the distance from [l/ɹ] to [ɹ], because the model has been 

trained to recognize ambiguous tokens as [l]). 

c. For model 'R', this ratio should become larger for higher 

layers (the distance from [l/ɹ] to [l] should be larger than 

the distance from [l/ɹ] to [ɹ], because the model has been 

trained to recognize the ambiguous tokens as [ɹ]). 

 

Table 2 shows that indeed the average distances between 

the ambiguous sound tokens and the [l] and [ɹ] tokens, 

respectively, are fairly similar across all three models at layer 

0. In the AmbL model, for higher layers, indeed the ratio 

decreases, indicating that the average distance between the [l/ɹ] 

tokens and the [l] tokens decreases, although the effect is 

somewhat small. In the AmbR model, the ratio increases 

substantially, indicating that the average distance between the 

[l/ɹ] tokens and the [ɹ] tokens decreases substantially. 

3.3. Visualizations  

Figures 1-3 show 3D Principal Component Analysis (PCA) 

visualizations of the I-vectors. These vectors are trained on the 

activations of the nodes of hidden layer 4 to the input sounds 

for the baseline model, the AmbL model, and AmbR model, 

respectively. The I-vector was trained on the activations of all 

the sounds, but PCA was only trained on the sounds of interest 

in this study. Green bullets denote the representation of the 

activations to [l/ɹ] tokens, red to the [l] tokens, and blue to the 

[ɹ] tokens. Figure 1 shows that the hidden nodes which are 



activated when the input contains [l/ɹ] are positioned right in 

between the hidden nodes which are activated for input [l] and 

those for input [ɹ]. From an acoustic point of view this makes 

sense as the ambiguous sound [l/ɹ] is midway between a natural 

[l] and a natural [ɹ]. Retraining with the ambiguous sounds in a 

context that favors an [l] interpretation, i.e., mapping the 

ambiguous sound onto the [l] phoneme category, causes the 

network weights to be retuned in such a way that the I-vectors 

corresponding to ambiguous sounds are closer to those of [l] 

sounds, while the distance to the [ɹ] sounds increases (see 

Figure 2). Retraining such that the ambiguous sound is mapped 

onto the [ɹ] phoneme category results in the opposite pattern 

(see Figure 3): the I-vectors for [l/ɹ] segments are closer to the 

I-vectors for [ɹ] segments compared to the baseline model, 

while the distance to the [l] segments has increased. These 

results, and the results of Table 2, show that lexical retuning is 

implemented not just by changing the classification boundary 

between [l] and [ɹ], but also by changing the internal hidden-

layer representation of each phonetic segment. When the 

network is trained to classify deviant sounds as [l], it does so by 

changing the hidden layers of the network so that the deviant 

sounds are shifted closer to [l]; when the network is trained to 

classify deviant sounds as [ɹ], it implements the opposite shift. 

  
Figure 1. PCA visualization of the activations of the 4th 

hidden layer to input /l/, /r/, and the ambiguous sounds in the 

baseline model. 

 
Figure 2. PCA visualization of the activations of the 4th 

hidden layer to input /l/, /r/, and the ambiguous sounds in 

ambL model. 

 

 
Figure 3. PCA visualization of the activations of the 4th 

hidden layer to input /l/, /r/, and the ambiguous sounds in the 

ambR model. 

4. Discussion and concluding remarks 

We investigated the adaptation of phoneme categories after 

exposure to ambiguous speech, a process also referred to as 

perceptual learning. We retrained a DNN model with additional 

material from a new speaker who had an (artificially created) 

ambiguous sound [l/ɹ], in between natural [l] and [ɹ] in a set-up 

similar to that of lexical retuning experiments with human 

listeners [16]. The DNNs retrained with the [l/ɹ] sounds indeed 

showed perceptual learning: while a model not exposed the [l/ɹ] 

sound classified [l/ɹ] during a subsequent test phase as [l] half 

of the time and also as [ɹ] a few times, the models retrained with 

the [l/ɹ] sound classified these [l/ɹ] sounds as either [l] or [ɹ] 

depending on the labels used during training. Calculations of 

the distances between the average activations to the natural 

sounds and the ambiguous sound and the visualizations of the 

activations of the hidden layers clearly indicated that the DNNs 

showed perceptual learning at the intermediate levels, not just 

at the output level. Future work will include more detailed 

analyses of the effect of the number of ambiguous training 

items on (the time-course of) retraining. 

The results are in line with a plethora of lexical retuning 

experiments in human listeners, e.g., [12-18]. Upon hearing an 

ambiguous sound, humans have been suggested to change their 

internal representation of the sound category [14]. The results 

of our visualizations corroborate this suggestion, but 

furthermore suggest that perceptual learning does not simply 

result in the redrawing of phoneme category boundaries to 

include the ambiguous sound into an existing phoneme 

category [14], but rather that the phoneme category space is 

warped such that the representation of the ambiguous sound 

moves closer to the sound category as which it was classified. 

These results line up with other findings: Although human 

listeners have been shown to treat the ambiguous sound as if 

they are natural versions of the particular sound [16], they 

nevertheless remain able to distinguish between the ambiguous 

sound and examples of the natural phoneme category (but they 

are less good at it compared to before exposure) [14]. 

The experiment consisted of a carefully controlled, though 

restricted, set-up with only one ambiguous sound – a situation 

that might not often occur in everyday speech. This set-up 

allowed us, on the one hand, to focus specifically on one 

process, i.e., perceptual learning, without interference of other 

factors, and on the other hand, to explore the effects of that 

process on the hidden layers of DNNs. The success of the 

approach and the success of the DNNs to mimic human 

perceptual learning pave the way for further investigations of 

perceptual learning, in both human and automatic speech 

processing, to other types of speech, including naturally 

ambiguous speech, and other types of acoustic deviances from 

‘normal’ speaking and listening conditions, such as the effect 

of (non-native) accents, dysarthric speech, or the presence of 

background noise. This work brings us one step closer to our 

ultimate goal of building human-speech processing inspired 

ASR systems that, similar to human listeners, can adjust 

flexibly and fast to all kinds of new input, and show that DNNs 

can be used as a way to investigate human speech processing.  

5. Acknowledgements 

O.S. was partly supported by a Vidi-grant from The 

Netherlands Organization for Scientific Research (NWO; grant 

number: 276-89-003). The authors would like to thank 

Raghavedra Pappagari for writing code to accumulate feature 

vector activations within phonetic segments. 

[l/ɹ]  

[l] 

[ɹ] 

[l/ɹ]  

[l] 

[ɹ] 

[l/ɹ]  

[l] 

[ɹ] 



6. References 

[1] D. Marr, Vision: A computational investigation into the human 

representation and processing of visual information. San 

Francisco: Freeman, 1982. 

[2] O. Scharenborg, D. Norris, L. ten Bosch, J.M. McQueen, “How 

should a speech recognizer work?” Cognitive Science, vol., 29, 

no. 6, pp. 867-918, 2005. 

[3] O. Scharenborg, “Reaching over the gap: A review of efforts to 

link human and automatic speech recognition research”, Speech 

Communication, vol. 49, pp. 336-347, 2007. 

[4] M.H. Davis & O. Scharenborg, “Speech perception by humans 

and machines”, In: M.G. Gaskell & J. Mirkovic (Eds.) Speech 

Perception and Spoken Word Recognition, part of the series 
“Current Issues in the Psychology of Language”, Routledge: 

London and New York, pp.181-203, 2017. 

[5] S. Dusan & L.R. Rabiner, “On integrating insights from human 
speech recognition into automatic speech recognition. 

Proceedings of Interspeech, pp. 1233-1236, 2005. 

[6] S. Davis & P. Mermelstein, “Comparison of the parametric 
representation for monosyllabic word recognition”, IEEE 

Transactions on Acoustics, Speech, and Signal Processing, vol. 

28, no. 4, pp. 357–366, 1980.  

[7] H. Hermansky, “Should recognizers have ears?” Speech 

Communication, vol. 25, pp. 3-27, 1998.  

[8] M. De Wachter, K. Demuynck, D. van Compernolle, & P. 
Wambaq, “Data driven example based continuous speech 

recognition”, Proceedings of Eurospeech, Geneva, Switzerland, 

pp. 1133-1136, 2003. 

[9] S.D. Goldinger, “Echoes of echoes? An episodic theory of lexical 

access”, Psychological Review, vol. 105, pp. 251-279, 1998. 

[10] O. Scharenborg, “Modeling the use of durational information in 
human spoken-word recognition”, Journal of the Acoustical 

Society of America, vol. 127, no. 6, pp. 3758-3770, 2010. 

[11] B. de Boer & P.K. Kuhl, “Investigating the role of infant-directed 

speech with a computer model”, ARLO, vol. 4, pp. 129-134, 2003. 

[12] A.G. Samuel & T. Kraljic, “Perceptual learning in speech 

perception”, Attention, Perception & Psychophysics, vol.71, pp. 

1207-1218, 2009.  

[13] D. Norris, J.M. McQueen, & A. Cutler, “Perceptual learning in 

speech”, Cognitive Psychology, vol. 47, no. 2, pp. 204-238, 2003.  

[14] C. Clarke-Davidson, P.A. Luce, & J.R. Sawusch, “Does 

perceptual learning in speech reflect changes in phonetic category 

representation or decision bias?” Perception & Psychophysics, 

vol. 70, pp. 604-618, 2008. 

[15] P. Drozdova, R. van Hout, & O. Scharenborg, “Lexically-guided 

perceptual learning in non-native listening,” Bilingualism: 
Language and Cognition, vol. 19, no. 5, pp. 914-920, 2016. 

doi:10.1017/S136672891600002X. 

[16] O. Scharenborg & E. Janse, “Comparing lexically-guided 
perceptual learning in younger and older listeners”, Attention, 

Perception, and Psychophysics, vol. 75, no. 3, pp. 525-536, 2013. 

doi: 10.3758/s13414-013-0422-4. 

[17] P. Drozdova, R. van Hout & O. Scharenborg, “Processing and 

adaptation to ambiguous sounds during the course of perceptual 

learning,” Proceedings of Interspeech, pp. 2811-2815, 2016. 

[18] K. Poellmann, J.M. McQueen, & H. Mitterer, “The time course of 

perceptual learning”, Proceedings of ICPhS, 2011. 

[19] M.J. Gales, “Maximum likelihood linear transformations for 

HMM-based speech recognition”, Computer Speech & Language, 

vol. 12, no. 2, pp. 75-98, 1998. 

[20] H. Liao, “Speaker adaptation of context dependent deep neural 

networks”, Proceedings of ICASSP, pp. 7947-7951, 2013. 

[21] D. Castelvecchi, “Can we open the black box of AI?”, Nature, vol. 

538, pp. 20-23, 2016.  

[22] N.H.J. Oostdijk, W. Goedertier, F. Van Eynde, L. Boves, J.-P. 

Martens, M. Moortgat, & H. Baayen, “Experiences from the 

Spoken Dutch Corpus project”, Proc. LREC – Third International 
Conference on Language Resources and Evaluation, Las Palmas 

de Gran Canaria, pp. 340-347, 2002. 

[23] N. Dehak, “I-vector representation based on GMM and DNN for 
audio classification”, Keynote speech at Odyssey 2016 Speaker 

and Language Workshop, 2016. 

[24] M.H. Bahari, N. Dehak, H. Van hamme, L. Burget, A.M. Ali, & 
J. Glass, “Non-negative factor analysis of Gaussian mixture 

model weight adaptation for language and dialect recognition”, 

IEEE/ACM Transactions on Audio, Speech, and Language 

Processing, vol. 22, no. 7, pp. 1117-1129, 2014. 


