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Abstract
Recently, the connectionist temporal classification (CTC)
model coupled with recurrent (RNN) or convolutional neural
networks (CNN), made it easier to train speech recognition sys-
tems in an end-to-end fashion. However in real-valued mod-
els, time frame components such as mel-filter-bank energies and
the cepstral coefficients obtained from them, together with their
first and second order derivatives, are processed as individual
elements, while a natural alternative is to process such compo-
nents as composed entities. We propose to group such elements
in the form of quaternions and to process these quaternions us-
ing the established quaternion algebra. Quaternion numbers and
quaternion neural networks have shown their efficiency to pro-
cess multidimensional inputs as entities, to encode internal de-
pendencies, and to solve many tasks with less learning param-
eters than real-valued models. This paper proposes to integrate
multiple feature views in quaternion-valued convolutional neu-
ral network (QCNN), to be used for sequence-to-sequence map-
ping with the CTC model. Promising results are reported us-
ing simple QCNNs in phoneme recognition experiments with
the TIMIT corpus. More precisely, QCNNs obtain a lower
phoneme error rate (PER) with less learning parameters than
a competing model based on real-valued CNNs.
Index Terms: quaternion convolutional neural networks, auto-
matic speech recognition, deep learning

1. Introduction
Recurrent (RNN) and convolutional (CNN) neural networks
have improved the performance over hidden Markov models
(HMM) combined with gaussian mixtures models (GMMs) in
automatic speech recognition (ASR) systems [1, 2, 3, 4, 5] dur-
ing the last decade. More recently, end-to-end approaches re-
ceived a growing interest due to the promising results obtained
with connectionist temporal classification (CTC) [6] combined
with RNNs [1] or CNNs [7].
However, despite such evolution of models and paradigms, the
acoustic features remain almost the same. The main motivation
is that filters spaced linearly at low frequencies and logarith-
mically at high frequencies make it possible to capture phonet-
ically important acoustic correlates. Early evidence was pro-
vided in [8] showing that mel frequency scaled cepstral coeffi-
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cients (MFCCs) are effective in capturing the acoustic informa-
tion required to recognize syllables in continuous speech. Mo-
tivated by these analysis, a small number of MFCCs (usually
13) with their first and second time-derivatives, as proposed in
[9], have been found suited for statistical and neural ASR sys-
tems. In most systems, a time frame of the speech signal is
represented by a vector with real-valued elements that express
sequences of MFCCs, or filter energies, and their temporal con-
text features. A concern addressed in this paper, is the fact that
the relations between different views of the features associated
with a frequency are not explicitly represented in the feature
vectors used so far. Therefore, this paper proposes to:

• Introduce a new quaternion representation (Section 2)
to encode multiple views of a time-frame frequency in
which different views are encoded as values of imagi-
nary parts of a hyper-complex number. Thus, vectors of
quaternions are embedded using operations defined by a
specific quaternion algebra to preserve a distinction be-
tween features of each frequency representation.

• Merge a quaternion convolutional neural network
(QCNN, Section 3) with the CTC in a unified and eas-
ily reusable framework1.

• Compare and evaluate the effectiveness of the proposed
QCNN to an equivalent real-valued model on the TIMIT
[10] phonemes recognition task (Section 4).

There are advantages which could derive from bundling groups
of numbers into a quaternion. Like capsule networks [11],
quaternion networks create a tighter association between small
groups of numbers rather than having one homogeneous repre-
sentation. In addition, this kind of structure reduces the number
of required parameters considerably, because only one weight is
necessary between two quaternion units, instead of 4×4 = 16.
The hypothesis tested here is whether these advantages lead
to better generalization. The conducted experiments on the
TIMIT dataset yielded a phoneme error rate (PER) of 19.64%
for QCNNs which is significantly lower than the PER obtained
with real-valued CNNs (20.57%), with the same input features.
Moreover, from a practical point of view, the resulting networks
have a considerably smaller memory footprint due to a smaller
set of parameters.

1The full code is available at https://git.io/vx8so
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2. Quaternion algebra
The quaternions algebra H defines operations between quater-
nion numbers. A quaternion Q is an extension of a complex
number defined in a four dimensional space. Q = r1 + xi +
yj + zk, with, r, x, y, and z four real numbers, and 1, i, j, and k
are the quaternion unit basis. Such a definition can be used for
describing spatial rotations that can also be represented by the
following matrix of real numbers:

Q =

 r x y z
−x r −z y
−y z r −x
−z −y x r

 . (1)

In a quaternion, r is the real part while xi+yj+zk is the imag-
inary part (I) or the vector part. Basic quaternion definitions
are

• all products of i, j,k are: i2 = j2 = k2 = ijk = −1,

• conjugate Q∗ of Q is: Q∗ = r1− xi− yj− zk,

• unit quaternion Q/ = Q√
r2+x2+y2+z2

,

• the Hamilton product ⊗ between Q1 and Q2 is defined
as follows:

Q1 ⊗Q2 =(r1r2 − x1x2 − y1y2 − z1z2)+
(r1x2 + x1r2 + y1z2 − z1y2)i+
(r1y2 − x1z2 + y1r2 + z1x2)j+
(r1z2 + x1y2 − y1x2 + z1r2)k.

The Hamilton product is used in QCNNs to perform transfor-
mations of vectors representing quaternions, as well as scaling
and interpolation between two rotations following a geodesic
over a sphere in the R3 space as shown in [12].

3. Quaternion convolutional neural
networks

This section defines the internal quaternion representation (Sec-
tion 3.1), the quaternion convolution (Section 3.2), a proper pa-
rameter initialization (Section 3.3), and the connectionist tem-
poral classification (Section 3.4).

3.1. Quaternion internal representation

The QCNN is a quaternion extension of well-known real-valued
and complex-valued deep convolutional networks (CNN) [13,
14]. The quaternion algebra is ensured by manipulating ma-
trices of real numbers. Consequently, a traditional 2D convo-
lutional layer, with a kernel that contains N feature maps, is
split into 4 parts: the first part equal to r, the second one to
xi, the third one to yj and the last one to zk of a quaternion
Q = r1+xi+yj+ zk. Nonetheless, an important condition to
perform backpropagation in either real, complex or quaternion
neural networks is to have cost and activation functions that are
differentiable with respect to each part of the real, complex or
quaternion number. Many activation functions for quaternion
have been investigated [15] and a quaternion backpropagation
algorithm have been proposed in [16]. Consequently, the split
activation [17, 18] function is applied to every layer and is de-
fined as follows:

α(Q) = α(r) + α(x)i + α(y)j + α(z)k, (2)

with α corresponding to any standard activation function.

3.2. Quaternion-valued convolution

Following a recent proposition for convolution of complex
numbers[14] and quaternions [19], this paper presents basic
neural networks convolution operations using quaternion alge-
bra. The convolution process is defined in the real-valued space
by convolving a filter matrix with a vector. In a QCNN, the con-
volution of a quaternion filter matrix with a quaternion vector is
performed. For this computation, the Hamilton product is com-
puted using the real-valued matrices representation of quater-
nions. Let W = R + Xi + Y j + Zk be a quaternion weight
filter matrix, and Xp = r + xi + yj + zk the quaternion input
vector. The quaternion convolution w.r.t the Hamilton product
W ⊗Xp is defined as follows:

W ⊗Xp =(Rr −Xx− Y y − Zz)+
(Rx+Xr + Y z − Zy)i+
(Ry −Xz + Y r + Zx)j+
(Rz +Xy − Y x+ Zr)k, (3)

and can thus be expressed in a matrix form:

W ⊗Xp =

R −X −Y −Z
X R −Z Y
Y Z R −X
Z −Y X R

 ∗
rxy
z

 =

 r′

x′i
y′j
z′k

 , (4)

An illustration of such operation is depicted in Figure 1.

Figure 1: Illustration of the quaternion convolution

3.3. Weight initialization

Weight initialization is crucial to efficiently train neural net-
works. An appropriate initialization improves training speed
and reduces the risk of exploding or vanishing gradient. A
quaternion initialization is composed of two steps. First, for
each weight to be initialized, a purely imaginary quaternion
qimag is generated following an uniform distribution in the in-
terval [0, 1]. The imaginary unit is then normalized to obtain
q/imag following the quaternion normalization equation. The
later is used alongside to other well known initializing criterion
such as [20] or [21] to complete the initialization process of
a given quaternion weight named w. Moreover, the generated
weight has a polar form defined by :

w = |w|enθ = |w|(cos(θ) + nsin(θ)), (5)

with

n =
xi + yj + zk
|w|sin(θ) . (6)

Therefore, w is generated as follows:



• wr = φ ∗ q/imagr ∗ cos(θ),
• wi = φ ∗ q/imagi ∗ sin(θ),
• wj = φ ∗ q/imagj ∗ sin(θ),
• wk = φ ∗ q/imagk ∗ sin(θ).

However, φ represents a randomly generated variable with re-
spect to the variance of the quaternion weight and the selected
initialization criterion. The initialization process follows [20]
and [21] to derive the variance of the quaternion-valued weight
parameters. Therefore, the variance of W has to be investigated:

V ar(W) = E(|W|2)− [E(|W|)]2. (7)

[E(|W|)]2 is equals to 0 since the weight distribution is symmet-
ric around 0. Nonetheless, the value of V ar(W) = E(|W|2) is
not trivial in the case of quaternion-valued matrices. Indeed, W
follows a Chi-distributed with four degrees of freedom (DOFs)
and V ar(W) = E(|W|2) is expressed and computed as fol-
lows:

V ar(W) = E(|W|2) =
∫ ∞
0

x2f(x) dx = 4σ2. (8)

Therefore, in order to respect the He Criterion [21], the variance
would be equal to:

σ =
1√

2(nin)
. (9)

3.4. Connectionist Temporal Classification

In the acoustic modeling part of ASR systems, the task of
sequence-to-sequence mapping from an input acoustic signal
X = [x1, ..., xn] to a sequence of symbols T = [t1, ..., tm]
is complex due to:

• X and T could be in arbitrary length.
• The alignment between X and T is unknown in most

cases.
Specially, T is usually shorter thanX in terms of phoneme sym-
bols.

To alleviate these problems, connectionist temporal clas-
sification (CTC) has been proposed [6]. First, a softmax is
applied at each timestep, or frame, providing a probability of
emitting each symbol X at that timestep. This probability
results in a symbol sequences representation P (O|X), with
O = [o1, ..., on] in the latent space O. A blank symbol ′−′
is introduced as an extra label to allow the classifier to deal with
the unknown alignment. Then, O is transformed to the final
output sequence with a many-to-one function g(O) defined as
follows:

g(z1, z2,−, z3,−)
g(z1, z2, z3, z3,−)
g(z1,−, z2, z3, z3)

 = (z1, z2, z3). (10)

Consequently, the output sequence is a summation over the
probability of all possible alignments between X and T after
applying the function g(O). Accordingly to [6] the parameters
of the models are learned based on the cross entropy loss func-
tion: ∑

X,T∈train
− log(P (O|X)). (11)

During the inference, a best path decoding algorithm is per-
formed. Therefore, the latent sequence with the highest proba-
bility is obtained by performing argmax of the softmax output
at each timestep. The final sequence is obtained by applying the
function g(.) to the latent sequence.

4. Experiments
The performance and efficiency of the proposed QCNNs is eval-
uated on a phoneme recognition task. This section provides de-
tails on the dataset and the quaternion features representation
(Section 4.1), the models configurations (Section 4.2), and fi-
nally a discussion of the observed results (Section 4.3).

4.1. TIMIT dataset and acoustic features of quaternions

The TIMIT [10] dataset is composed of a standard 462-speaker
training dataset, a 50-speakers development dataset and a core
test dataset of 192 sentences. During the experiments, the SA
records of the training set are removed and the development set
is used for early stopping. The raw audio is transformed into 40-
dimensional log mel-filter-bank coefficients with deltas, delta-
deltas, and energy terms, resulting in a one dimensional vector
of length 123. An acoustic quaternion Q(f, t) associated with
a frequency f and a time frame t is defined as follows:

Q(f, t) = 0 + e(f, t)i + ∂e(f, t)

∂t
j + ∂2e(f, t)

∂2t
k. (12)

It represents multiple views of a frequency f at time frame t,
consisting of the energy e(f, t) in the filter band correspond-
ing to f , its first time derivative describing a slope view, and
its second time derivative describing a concavity view. Finally,
a unique quaternion is composed with the three corresponding
energy terms. Thus, the quaternion input vector length is 41
( 123

3
).

4.2. Models architectures

The architectures of both CNN and QCNN models are inspired
by [7]. A first 2D convolutional layer is followed by a max-
pooling layer along the frequency axis. Then, n 2D convolu-
tional layers are included, together with 3 dense layers of sizes
1024 and 256 respectively for real- and quaternion-valued mod-
els (with n ∈ [6, 10]). Indeed, the output of a dense quaternion-
valued layer has 256 × 4 = 1024 nodes and is 4 times larger
than the number of units. The filter size is rectangular (3, 5),
and a padding is applied to keep the sequence and signal sizes
unaltered. The number of feature maps varies from 32 to 256
for the real-valued models and from 8 to 64 for quaternion-
valued models. Indeed, the number of output feature maps is
4 times larger in the QCNN due to the quaternion convolution,
meaning 32 quaternion-valued feature maps correspond to 128
real-valued ones. The PReLU activation function is employed
for both models [21]. A dropout of 0.3 and a L2 regularization
of 1e−5 are used across all the layers, except the input and out-
put ones. CNNs and QCNNs are trained with the Adam learn-
ing rate optimizer and vanilla hyperparameters [22] during 100
epochs. Then, a fine-tuning process of 50 epochs is performed
with a standard sgd and a learning rate of 1e−5. Finally, the
standard CTC loss function defined in [6] and implemented in
[23] is applied. Experiments are performed on Tesla P100 and
Geforce Titan X GPUs.

4.3. Results and discussion

Results on the phoneme recognition task of the TIMIT dataset
are reported in Table 1. It is worth noticing the important dif-
ference in terms of the number of learning parameters between
real and quaternion valued CNNs. It is easily explained by the
quaternion algebra. In the case of a dense layer with 1, 024
input values and 1, 024 hidden units, a real-valued model will



have 1, 0242 ≈ 1M parameters, while to maintain equal in-
put and output nodes (1, 024) the quaternion equivalent has
256 quaternions inputs and 256 quaternion-valued hidden units.
Therefore the number of parameters for the quaternion model is
2562 × 4 ≈ 0.26M. Such a complexity reduction turns out to
produce better results and may have other advantages such as
a smallest memory footprint while saving NN models. More-
over, the reduction of the number of parameters does not result
in poor performance in the QCNN. Indeed, the best PER re-
ported is 19.64% from a QCNN with 256 feature maps and 10
layers, compared to a PER of 20.57% for a real-valued CNN
with 64 feature maps and 10 layers. It is worth underlying
that both model accuracies are increasing with the size and the
depth of the neural network. However, bigger real-valued fea-
ture maps leads to overfitting. In fact, as shown in Table 1, the
best PER for a real-valued model is reached with 64 (20.57)
feature maps and decreasing at 128 (20.62%) and 256 (21.23).
The QCNN does not suffer from such weaknesses due to the
smaller density of the neural network and achieved a constant
PER improvement alongside with the increasing number of fea-
ture maps. Furthermore, QCNNs always performed better than
CNNs independently of the model topologies.

Table 1: Experiment results expressed in term of phoneme error
rate (PER) percentage of both QCNN and CNN based models
on the TIMIT phoneme recognition task. The results are from
a 3 folds average. ’L’ stands for number of Layers, ’FM’ for
number of feature maps, and ’Params’ for number of learning
parameters. The latter is expressed in order to be equivalent
for both models. Therefore, 32FM is equal to 32FM for real
numbers and 8 quaternion-valued FM

Models Dev PER
%

Test PER
%

Params

R-CNN-6L-32FM 22.18 23.54 3.3M
H-QCNN-6L-32FM 22.16 23.20 0.87M
R-CNN-10L-32FM 21.77 23.43 3.4M
H-QCNN-10L-32FM 22.25 23.23 0.9M
R-CNN-6L-64FM 21.19 22.12 4.8M
H-QCNN-6L-64FM 21.44 21.99 1.2M
R-CNN-10L-64FM 19.53 20,57 5.4M
H-QCNN-10L-64FM 19.78 20.44 1.4M
R-CNN-6L-128FM 20.33 22.14 9M
H-QCNN-6L-128FM 20.12 21.33 2.3M
R-CNN-10L-128FM 19.37 20.62 11.5M
H-QCNN-10L-128FM 19.02 19.87 2.9M
R-CNN-6L-256FM 20.43 22.25 22.3M
H-QCNN-6L-256FM 19.94 20.54 5.6M
R-CNN-10L-256FM 18.89 21.23 32.1M

H-QCNN-10L-256FM 18.33 19.64 8.1M

With much fewer learning parameters for a given architec-
ture, the QCNN performs always better than the real-valued one
on the reported task. In terms of PER, an average relative gain
of 3.25% (w.r.t CNNs result) is obtained on the testing set. It is
also worth recalling that the best PER of 19.64% is obtained
with just a QCNN without HMMs, RNNs, attention mecha-
nisms, batch normalization, phoneme language model, acous-
tic data normalization or adaptation. Further improvements can
be obtained with exactly the same QCNN by just introducing a
new acoustic feature in the real part of the quaternions.

5. Related work
Early attempts to perform phoneme and phonetic feature recog-
nition with multilayer perceptrons (MLP) were proposed in [24,
25, 26]. A PER of 26.1% is reported in [25] using RNNs. More
recently, in [27] a Mean-Covariance Restricted Boltzmann Ma-
chine (RBM) is used for recognizing phonemes in the TIMIT
corpus using RBM for feature extraction. Along this line of
research, in [6] an approach called the Connectionist Tempo-
ral Classification (CTC) has been developed and can be used
without an explicit input-output alignment. Bidirectional RNNs
(BRNNs) are used in [28] for processing input data in both di-
rections with two separate hidden layers, which are then com-
posed in an output layer. With standard mel frequency ener-
gies, first and second time derivatives a PER of 17.7% was ob-
tained. Other recent results with real-valued vectors of similar
features are reported in [29, 4, 30, 31]. Other types of quater-
nion valued neural networks (QNNs) were introduced for en-
coding RGB color relations in image pixels [32, 33, 34], and
for classifying human/human conversation topics [35, 36, 18].
A quaternion deep convolutional and residual neural network
proposed in [19] have shown impressive results on the CIFAR
images classification task. However, a specific quaternion is
used for each RGB color value as in [14] rather than integrating
pixel multiple views as in [37], and suggested in this paper for
an ASR task.

6. Conclusions
Summary. This paper proposes to integrate multiple acous-
tic feature views with quaternion hyper complex numbers, and
to process these features with a convolutional neural network
of quaternions. The phoneme recognition experiments have
shown that: 1) Given an equivalent architecture, QCNNs al-
ways outperform CNNs with significantly less parameters; 2)
QCNNs obtain better results than CNNs with a similar number
of learning parameters; 3) The best result obtained with QC-
NNs is better than the one observed with the real-valued coun-
terpart. This demonstrates the initial intuition that the capability
of the Hamilton product to learn internal latent relations helps
quaternions-valued neural networks to achieve better results .
Limitations and Future Work. So far, traditional acoustic fea-
tures, such as mel filter bank energies, first and second deriva-
tives have shown that significantly good results can be obtained
with a relative small set of input features for a speech time
frame. Nevertheless, speech science has shown that other multi-
view context-dependent acoustic relations characterize signals
of phonemes in context. Future work will attempt to charac-
terize those multi-view features that mostly contribute to re-
duce ambiguities in representing phoneme events. Furthermore,
quaternions-valued RNNs will also be investigated to see if they
can contribute to the improvement of recently achieved top of
the line results with real number RNNs.
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