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Abstract
State of the art query by example spoken term detection (QbE-
STD) systems in zero-resource conditions rely on representa-
tion of speech in terms of sequences of class-conditional poste-
rior probabilities estimated by deep neural network (DNN). The
posteriors are often used for pattern matching or dynamic time
warping (DTW). Exploiting posterior probabilities as speech
representation propounds diverse advantages in a classification
system. One key property of the posterior representations is that
they admit a highly effective hashing strategy that enables in-
dexing a large audio archive in divisions for reducing the search
complexity. Moreover, posterior indexing leads to a compressed
representation and enables pronunciation dewarping and partial
detection with no need for DTW. We exploit these character-
istics of the posterior space in the context of redundant hash
addressing for query-by-example spoken term detection (QbE-
STD). We evaluate the QbE-STD system on AMI corpus and
demonstrate that tremendous speedup and superior accuracy is
achieved compared to the state-of-the-art pattern matching so-
lution based on DTW. The system has the potential to enable
massively large scale spoken query detection.
Index Terms: Posterior probability structures, Posterior hash-
ing, Pronunciation dewarping, Structural similarity measure,
Query by example, Spoken term detection.

1. Introduction
Query-by-Example Spoken Term Detection (QbE-STD) refers
to the task of finding out audio documents containing a spoken
query. The query is uttered by the user so only very few (or just
a single) examples are provided. This system enables the user
to search over multi-lingual audio archives without any prior as-
sumption on the language of the query. Hence, the task is inher-
ently language independent and no (or quite limited) linguistic
resources may be available for system development.

1.1. State-of-the-art Solutions and Challenges

QbE-STD received serious consideration in the context of Me-
diaEval spoken query search benchmarking campaign [1, 2, 3].
Recent exemplar based speech processing offers high flexibility
in speech applications, partly attributed to the lack of complex
statistical assumptions that facilitate exploiting “data deluge”
with no prejudice on expected answers. Deep neural network
(DNN) based class-conditional posterior probabilities (hereafter
referred to as posteriors) have been found to be one of the best
speech representations to enable exemplar based speech recog-
nition [4] and spoken query detection [5, 6, 7]. In theory, if in-
finite number of exemplars of continuous probability density
functions are provided, a simple nearest-neighbor rule leads to
optimal classification [8].

Nevertheless, exemplar-based speech processing faces two
fundamental problems: (1) The growing size of the databases

prohibits efficient search, and (2) The duration variation in
speech pronunciation is effectively handled via dynamic time
warping that is computationally expensive and sub-optimal due
to dependency on the local reference exemplar. This paper ad-
dresses these limitations to foster exemplar based solutions for
real time applications.

DNN posteriors live in union of low-dimensional structured
sparse subspaces [9,10]. Exploiting this property enables a hier-
archical speech classification and recognition framework based
on structured sparse modeling of posterior exemplars [9, 11].
In addition, the low-dimensional subspaces can be modeled
through dictionary learning for sparse coding to enable unsu-
pervised adaptation and enhanced acoustic modeling for speech
recognition [10, 12]. Sparse subspace modeling of the poste-
rior exemplars are also found promising for query-by-example
spoken term detection (QbE-STD) [7, 11, 13].

Recently, we investigated a novel application of structured
sparsity of posterior probabilities in devising an effective hash-
ing technique to reduce the search space of posterior exem-
plars [14]. Application of hashing in exemplar search enables
splitting the search space into disjoint buckets each indexed
with a unique hash key (posterior representative). The exhaus-
tive search space is thus downsized to the corresponding bucket
sizes. In this context, the hash function ensures geometric lo-
cality preserving of neighboring examples [14, 15]. In this pa-
per, we propose a highly efficient QbE-STD system exploiting
posterior hashing. The framework is inspired from the idea of
redundant hash addressing.

Redundant hash addressing (RHA) was initially proposed
by Teuvo Kohonen as a fast method for recognition and correc-
tion of garbled symbol strings. It is an associative method based
on the use of multiple (redundant) features extracted from the
same input item [16]. The comparison of the input item against
the reference items is based on these features. Redundancy is
exploited to increase error tolerance and robustness. Kohonen
applied this idea for word recognition. The segments of N con-
secutive letters (N -grams) are considered. The RHA system
consists of the N -gram table and word dictionaries. Multiple
features (N -grams) are extracted from the input string and each
extracted N -gram associates the input string with a word in the
dictionary based on the number of matching N -grams [16].

To obtain the N -grams of symbols/letters for RHA, the
acoustic feature vectors are first quantized and mapped into a
symbol space. To that end, the self organizing map (SOM) neu-
ral network is used as a codebook to map the input feature vec-
tors into the finite set of prototype vectors. When each prototype
vector is provided with an index, feature vector sequence can be
mapped into a symbolic index sequences. Each feature vector
is encoded by the index of its best matching unit. The node
indices of the SOM are thus the alphabet of the system [17].
In this paper, we propose that posterior hashing can be used to
define the codebook for RHA.



In the following Section 2, we briefly explain the idea of
posterior hashing. The new framework of RHA for QbE-STD
is explained in Sections 3. We also exploit posterior hashing to
develop an efficient pattern matching method in Section 4. The
experiments are conducted in Section 5, and the conclusions are
drawn in Section 6.

2. Hashing Structured Posterior
Probabilities

We consider the posterior vector consisting of Q class-
conditional posterior probabilities estimated by DNN from the
input acoustic feature x, denoted as

z = [p(C1|x), . . . , p(Cq|x), . . . , p(CQ|x)]> (1)

where .> is the transpose operator. The posteriors can be de-
fined at any linguistic level. The typical phone and phonolog-
ical posteriors are shown to be highly structured and living in
low-dimensional subspaces [12, 18]. Taking advantage of the
underlying structured sparsity of posteriors, a hashing technique
is devised to divide the space into smaller size buckets of neigh-
boring posteriors based on the following hashing formula

H(z) =

⌊
2bz
⌋

2b
(2)

where b is the number of bits for quantization. The number of
unique quantized posteriors is small with respect to the sample
size, and the quantized posteriors can be regarded as represen-
tatives of the posterior space. The quantized posterior repre-
sentatives can be used as hash keys for splitting the space into
geometric neighbors as disjoint buckets.

In theory, quantization of every component of posteriors in
b bits leads to splitting the space in maximum 2K disjoint re-
gions where K = 2bQ. Accordingly, the size of training data
in each bucket can be reduced to an average N/2K . The anal-
ysis in [14] shows that the probability of negative examples in
a bucket is 1 − 2−Kb. Considering the typical value of Q for
phonetic or phonological posteriors, this hashing function leads
to a very small probability of encapsulating negative examples
or wrong positive examples in the same bucket. In practice, the
quantized posterior hashing is found to reduce the search space
drastically with no degradation in performance.

Inspired from the idea of redundant hash addressing (RHA)
for recognition of word sequences, we revisit its implications
and applicability for QbE-STD task. This application provides
a unique case study where the potential of posterior hashing is
fully exploited to speed up the query search on large speech
archives. In the following section, we review the principles of
RHA for query detection.

3. Redundant Hash Addressing
We adopt the basic word recognition RHA framework for query
detection. The dictionary consists of the query term. The
speech utterances are represented in terms of posteriors esti-
mated for short frames. The posteriors are converted into codes
exploiting quantized posterior hashing. To that end, the training
data is quantized and the unique binary codes form the code-
book of the hash keys or symbols in a hash space.

The dynamics of speech production is slower than the short
frame sampling frequency. Therefore, adjacent frames are
likely to share similar codes. To obtain a duration-invariant
representation, the similar codes of adjacent frames are merged.

This approach enables an efficient method to deal with the du-
ration variations in spoken utterances and queries.

Once the testing utterances and the spoken queries are con-
verted into this code space, N -grams are formed by concate-
nating each code with N − 1 adjacent ones on its right. Then,
the N -grams of the utterance and the query are compared. If a
matching code is occurred, it is labeled as 1 and 0 otherwise. In
this procedure, the N -grams capture the trajectory information
and they are processed independently. The number of detected
N -grams is used as the score for query detection. Fig. 1 illus-
trates the RHA framework for query detection.
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Figure 1: Building blocks of the RHA based QbE-STD system:
The sequence of posteriors is mapped to a sequence of symbols
each associated to a unique hash code. The N -grams of the
query dictionary are matched against the N -grams of the spo-
ken utterance. The number of matching N -grams is used as the
score for query detection.

Alternative solutions for detection tasks using posteriors
rely on nearest neighbor approaches to pattern matching [19].
Hence, we investigate this idea and exploit posterior hashing to
develop an efficient pattern matching framework in the follow-
ing section.

4. Structural Pattern Matching
One key problem of speech pattern matching is handling the
duration variation in speech production. Posterior hashing can
be used for segmentation of the similar codes in a pronunciation
dewarping mechanism.

4.1. Dewarping for Duration Invariance

The benefit of the redundant hash addressing principle is that the
duration variation can be addressed at the representation level
rather than the recognition level through DTW. We exploit the
duration invariant representation enabled by hashing for seg-
mentation of the speech utterance. To that end, blocks of simi-
lar hash keys are identified. It is hypothesized that the posteriors
encapsulated in a block represent temporal duration of a discrete
production process. This idea was previously found effective in
duration analysis of impaired speech production [20]. In this
work, we use the blocking procedure to address the duration
variation in speech representation. The posteriors of a block are
averaged to form an average pronunciation. The crucial factor
in the pattern matching system is the choice of similarity mea-
sure.

4.2. Structural Similarity Measure

The posterior space is highly structured and low-
dimensional [18, 21]. To exploit this property, we propose to
use Spearman’s rank correlation to measure the similarity of
posterior exemplars. The intuition is that the exact value of the
posteriors is less important compared to the structure of the
high probability components. The high probability components
quantify the order of significance in structuring the speech
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Figure 2: Building blocks of the structural pattern matching for
QbE-STD: The sequence of posteriors is processed in blocks
according to the similar hash keys. The blocked posteriors are
replaced with the average posterior to obtain a duration in-
variant representation. Structural similarity of the posteriors is
measured via Spearman’s similarity measure (3). The similarity
scores are integrated based on max-sum dynamic programming
to obtain the query detection score.

signal. The Spearman’s similarity measure is defined as

SSpearman(z1,z2) =

(rz1 − c) (rz2 − c)>√
(rz1 − c) (rz1 − c)>

√
(rz2 − c) (rz2 − c)>

. (3)

where rz1 and rz2 are the coordinate-wise rank vectors of the
posterior vectors z1 and z2, and c = Q+1

2
. The Spearman

similarity and the coordinate-wise rank vectors are computed
using MATLAB.

The frame level similarity scores constitute a curve indicat-
ing the probability of a query occurring in a test utterance. We
use max-sum dynamic programming to obtain a region of oc-
currence and the corresponding area under the curve is used as
the score for query detection [7]. This procedure is illustrated
in Fig. 2.

5. Experimental Evaluation
The experiments are conducted to evaluate the performance of
the proposed methods in challenging scenarios when just one
query example is provided for QbE-STD, and the query and
background are conversational spontaneous speech with inter-
fering speakers.

5.1. Benchmarking Setup

The AMI meeting corpus (IHM) [22] is used for the experi-
ments where the training, development and evaluation sets are
as [23]. Although the meeting language was English, many par-
ticipants were non-native speakers. Also, the headset recordings
contain considerable amount of overlapping speech due to in-
terfering speakers. There are approximately 12 k words in the
training, out of which 100 words are randomly used for our de-
tection experiments including very short words such as “ten” to
long words such as “requirements”. The 9 hours of speech in
the evaluation set is used as the search space for QbE-STD. The
total number of search utterances for query detection is 10179.
The average number of positive examples for all queries is 46
where the number of positive examples per query varies be-
tween 3 to 273 with a standard deviation of 52. A single query
example is chosen randomly from the training set for query de-
tection and it is used for all the systems.

5.2. Baseline System

The DTW based QbE-STD system presented in [1] is used
as a competitive baseline system [2]. It consists of following
steps. First, posterior features are extracted from both spoken
query and test utterance. These features vectors are then used
to compute a frame-level distance matrix using cosine similar-

ity. A modified DTW algorithm is employed to find a warping
path through this matrix and compute the corresponding likeli-
hood score. This DTW approach is similar to slope constrained
DTW [5] where the optimal warping path is normalized by its
partial path length at each step and constraints are imposed so
that the warping path can start and end at any point in the test
utterance.

5.3. Posterior Representation

In order to obtain posterior representation of the data, we con-
sider phonological posteriors. We use the open-source DNN
based phonological vocoding platform [24] for estimation of the
extended Sound Pattern of English (eSPE) phonological pos-
teriors. The motivation for using phonological posteriors is
three-fold: (1) Phonological posterior quantization and hashing
is found to be effective in search space reduction for accurate
classification [14, 18, 21], (2) Sub-phonetic nature of phono-
logical posteriors facilitates development of flexible and low-
resource speech detection and recognition solutions [25], and
(3) Phonological posterior are found robust for inter-domain
posterior representation where the training and testing acoustic
conditions and languages are different [14, 18, 21].

The ultimate goal of a large-scale QbE-STD system is to
operate on non-native speech of multiple languages across di-
verse domains of speech recordings. Hence, the training data of
AMI is not used and the DNN setup is trained on the Wall Street
Journal (WSJ) continuous speech recognition corpora [26]. It
consists of 21 different DNNs corresponding to each phono-
logical class including one class for silence. All DNNs have
3 hidden layers of 1024 neurons per layer. They were trained
using mel frequency cepstral coefficient feature (MFCC) with
a context of 9 frames. The output is trained as either 1 or 0 if
the phonological class is present or not. Hence, each DNN es-
timates the probability of occurrence of one phonological class
vs the rest. The outputs of all DNNs are concatenated to form a
phonological posterior vector [24].

5.4. QbE-STD Results

The QbE-STD evaluation results are illustrated in Fig. 3 where
N = 2 is considered for N -grams used in RHA. We can see that
RHA is the best performing system. Previous studies show that
posterior classification is most accurate when cosine similarity
is used [1,27]. However, we can see that pattern matching using
continuous posterior features is more effective when structural
similarity is exploited. The Spearman similarity yields up to 5%
reduction in the miss-rate at most operating points.

We observed no degradation in pattern matching perfor-
mance due to dewarping. This result was expected due to the
binary nature of phonological posteriors [18, 21]. Moreover, if
the dewarped posteriors are quantized into binary vectors and
Jaccard similarity is used for binary pattern matching [21], sim-
ilar results as the Spearman similarity measure is achieved. This
observation again confirms that the space of phonological pos-
teriors is highly structured and the structures bear more infor-
mation than the exact posterior values.

Each component of a phonological posterior indicates the
probability of a phone attribute composing a phonetic unit [24].
The permissible combinations are highly constrained due to ar-
ticulatory mechanisms governing speech production. There-
fore, the probabilities constituting a posterior are confined to
a small number of components where the indices of high prob-
abilities determine the unique structure of the vocal machinery
in speech production [21].
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Figure 3: QbE-STD performance on AMI database using (i) re-
dundant hash addressing (RHA, Section 3) with N-Gram match-
ing, (ii) Pattern matching (PM, Section 4) with Spearman struc-
tural similarity measure, and (iii) Pattern matching with co-
sine distance to measure posterior similarity [1, 27]. The DET
curves are compared with a competitive baseline DTW [1, 2]
system. A single example is used per query for detection.

5.5. Search Reduction

Posterior hashing reduces the computational cost through (1) re-
ducing the search space to a compressed space of unique codes
and (2) reducing the cost of similarity measure computation to
a look-up table associated to matching codes.

In the case of redundant hash addressing, the size of test
data is reduced to 0.0037 of the initial number of frames. The
size of query exemplars is also reduced to 0.4 of the initial size.
Hence, the search space is reduced to 0.0015 or nearly 104-
fold reduction. More precisely, the size of the AMI test set
is 2500333 frames that is reduced to 9216 unique codes ex-
ploiting posterior hashing. It may be noted that the number of
unique codes obtained from phonological posteriors extracted
for AMI corpus is only 0.0044 of the total number of possi-
ble codes (2Q), where Q denotes the number of phonological
classes that is 21 in this study.

In the case of pattern matching, application of hashing re-
duces the search space of exemplars to 0.16 of the initial size.
More concretely, the number of test frames is reduced by 0.4
and similarly, the number of query frames is also reduced to an
average 0.4 of the original size. Both RHA and pattern match-
ing can exploit binary pattern matching and it can be imple-
mented efficiently through a look-up table of code distances in
an offline preparation.

In general, assuming N number of frames, the computa-
tional complexity of DTW is O(N2). The proposed pattern
matching has the complexity of O(N) where N is effectively
reduced using the dewarping procedure. The computational
complexity of the RHA is O(C) where C denotes the number
of unique binary codes. It may be noted that C depends on the
pronunciation variations and it does not grow with N due to the
increasing number of similar pronunciations in growing size of
the speech archives.

6. Conclusions
Speech representation in terms of posterior probabilities offers
diverse benefits for speech classification applications, in partic-
ular solutions relying on exemplar matching. Posterior repre-
sentations are highly structured and low-dimensional. We ex-
ploit this property in devising an effective hashing technique to
define data driven symbols or codes. Redundant hash address-
ing is applied on the posterior codes to enable fast query search
by detecting the matching codes. A fast QbE-STD system is
achieved where the search space is reduced by a factor of 104.
The system is compared to a state-of-the art DTW based pattern
matching algorithm and it outperforms the alternative slower
solution. The unique codes encapsulate the structure of pronun-
ciations and their number is expected to be confined to a small
number of permissible articulatory structures regardless of the
growing size of the speech databases. Hence, redundant hash
addressing incorporating posterior hashing can lead to highly
efficient solutions for massively large scale query search. We
plan to investigate language independent QbE-STD system de-
velopment in future studies.
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