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Abstract

Many applications of single channel source separation (SCSS)
including automatic speech recognition (ASR), hearing aids etc.
require an estimation of only one source from a mixture of many
sources. Treating this special case as a regular SCSS problem
where in all constituent sources are given equal priority in terms
of reconstruction may result in a suboptimal separation perfor-
mance. In this paper, we tackle the one source separation prob-
lem by suitably modifying the orthodox SCSS framework and
focus only on one source at a time. The proposed approach is
a generic framework that can be applied to any existing SCSS
algorithm, improves performance, and scales well when there
are more than two sources in the mixture unlike most existing
SCSS methods. Additionally, existing SCSS algorithms rely on
fine hyper-parameter tuning hence making them difficult to use
in practice. Our framework takes a step towards automatic tun-
ing of the hyper-parameters thereby making our method better
suited for the mixture to be separated and thus practically more
useful. We test our framework on a neural network based algo-
rithm and the results show an improved performance in terms
of SDR and SAR.

Index Terms: Single Channel Source separation, Hyper-
parameter, Neural Network, Speech Recognition

1. Introduction

Single Channel Source Separation (SCSS) is an extraction of
two or more underlying source components from a single obser-
vation of their mixture. The SCSS problem arises in many sce-
narios including speech-denoising in telephony (e.g in call cen-
ters), for automatic speech recognition (ASR), sound separation
as a preprocessing for hearing aids specially in non-stationary
environments, and even sound event detection like fire-alarm,
scream detection in security related applications.

Recent research works [1} 2| 13} 14} I5] on supervised SCSS
problem have improved the more traditional techniques of un-
supervised blind source separation (BSS) by incorporating the
source training data to generate models, both linear and non-
linear, resulting in effective separation of sources. In particu-
lar, models based on Deep Neural Networks (DNN) have had a
tremendous success in the source separation tasks and pushed
the performance to a place where now source separation may
act as a practically useful pre-processing task.

Most of the above mentioned applications require separa-
tion of one dominant source from the mixture containing au-
dio signal from multiple sources. For instance, in the hearing
aid scenario, generally one speech signal needs to be separated
from the mixture containing one or more ‘noise’ sources. Sim-
ilar observation holds when source separation is applied as a
preprocessing task in ASR.

While many SCSS setups require one main source to be
separated, most existing model based source separation meth-

ods aim at simultaneous extraction of all the sources. Here each
individual source model is required to not only mitigate inter-
ference by other sources but also provide reasonable reconstruc-
tion performance. Effectively, a single optimization formulation
when burdened with providing equal priority to all sources, re-
sults in a suboptimal performance for every source. This issue
becomes more grave as the number of sources increase.

1.1. Contributions

Motivated by relevant applications and issues with joint separa-
tion paradigm, we introduced a ‘one source at a time’ separa-
tion framework in [6] for two sources when non-negative matrix
factorization (NMF) based models for each source is used. The
first contribution of this paper is the extension of this strategy
to any number of sources when the sources are modeled using
DNN. We combine all the sources other than the concerned one
into a single source, which we term as ’interferer’. This converts
the multi-source separation problem into a two-source separa-
tion problem where we concentrate on effective separation of
only one source at the cost of other interfering sources. One
key step is the inclusion of a term in the objective function that
increases the distance between the source estimate and inter-
ferer signal in its orthogonal component thereby effectively in-
creasing the source energy to artifact energy ratio (SAR) while
maintaining the a good source to interference ratio (SIR). Fi-
nally, our approach, which we call Discriminative Framework
for DNN (DF-DNN), is generic enough and can be applied to
many source separation setups.

Breaking a multiple source separation problem into two
source separation problem for each source also assists in hyper-
parameter tuning, especially when DNNs are used. Generally,
hyper parameters are tuned by employing a hit and trial on many
parameter values using the development data set, at times even
using manual intervention. In this paper, we attempt to make the
parameter tuning systematic by defining few meta-parameters
that act as a proxy for the key separation performance indices.
By observing these parameters during the training, we can ar-
rive at the appropriate parameter values and achieve training
models that have a higher likelihood of providing good sep-
aration performance. Note that our meta-parameters—like our
framework—is generic in nature and can be utilised over many
discriminative source separation frameworks.

1.2. Related Work

Most recent works in SCSS have employed methods that learn
discriminative models that utilize the training data to represent
individual sources such that a source model represents itself
well while simultaneously acts as a poor fit for other sources.
[5L17]]. The work in [8] proposed an regularized formulation that
jointly trains the NMF dictionaries penalizing the coherence be-
tween trained models. Methods proposed in [9] and [10] aim at



directly optimizing the SNR while training NMF dictionaries
and recurrent neural networks respectively. The work proposed
in [S]] trains a deep recurrent neural network that optimizes the
estimated masks of the sources, while [7]] discriminatively en-
hances the separated sources. To the best of our knowledge re-
searchers have not focused on automated hyper-parameter tun-
ing in their works.

2. Problem Description

Single channel source separation requires the estimation of L
sources from a single observation of their mixture

a(t) = Zyi(t), (1)

where y;(t), i = 1...L is the i*" source to be estimated and
x(t) is the observed mixture. Assuming that sources belong to
subspaces in the ambient vector space, the difficulty of separa-
tion increases when the sources share basis of subspaces they
belong to. On the other hand, when the sources are represented
by orthogonal subspaces, increasing L does not have any im-
pact, while if the subspaces have large overlap, the separation
performance decreases with an increase in number of sources.
This is a limitation of traditional source separation methods like
1517, 18 [10] that focus on simultaneous reconstruction of all the
L sources.

On the other hand, the proposed one source at a time ap-
proach decomposes the L-source separation problem into L dif-
ferent source separation problems each focusing on the estima-
tion of just one source and treating all the other sources as inter-
ference. Concretely, for the estimation of first source, i.e., y1 (t)
we consider all the other sources, y;(t), ¢ = 2. .. L, as interfer-
ence. Effectively, we have L source separation problems, one
for each source. This leads to high quality estimation of each
source as empirically demonstrated later. Without loss of gen-
erality, we will look at the problem of estimating the first source
from the mixture. To that end, we unfold (T) as

z(t) = () + (v2() + .. + y2(t)), )
N~
source interferers

where above we emphasize that all the sources other than y1 (¢)
combined together act as interferer effectively reducing the mul-
tiple source separation problem into a two source problem. The
aim of source separation is to estimate the underlying sources
in a way that each source is reconstructed with little deformity
and has minimal traces of other sources. The errors in an es-

timated source is defined are [11. Let Ply1,y2,...,yx] be
the orthogonal projector onto the space spanned by the vectors
Y1,Y2, - - -, Yk, then the interference and artifacts introduced in
the estimate of j*" source, denoted by y;, are given by
Er(j) = [Pr—Ps(i)]g; ©)
Ea(G) = 9 —Pry; )
where
Pr =P[(y;)1<jr<L]
and
Ps(j) = Ply;].
The SIR and SAR of estimated source ¢; are defined by
IPs ()31
SIR = 10log,, —=5— 5)
B ()
P;ii 2

SAR = lOloglo m
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Figure 1: Separation using DF-DNN

It is evident from (B) that the interference E; is the component
of the source estimate that lies in the space orthogonal to Pg.
The lesser the energy in Ey, better is the SIR. On the other hand
we are not concerned to remove the part of interferer that lies in
the subspace Ps(j) of the source while separating it. Therefore
our strategy gives us the freedom to focus on the reconstruction
of the source at the cost of interferer by subsuming overlapping
subspace of interferer and source to Ps(j). This means that
the source can use the overlapping part of the interferer for its
reconstruction that can increase the SAR (@) of the estimated
source.

The above insight is incorporated in our objective function
(in Section @) by adding a corresponding fit term for the com-
ponent of interferer orthogonal to source. The generality of our
approach makes it applicable to all kinds of supervised discrim-
inative methods. In this paper, we apply our framework on a
neural network based model described in [3].

3. Our Approach

We now discuss how to effectively solve a two-source separa-
tion problem using the proposed DF-DNN technique.

3.1. Joint Masking [5]

The features used to train the networks in this work are the mag-
nitude of the Short Time Fourier Transform (STFT). Each signal
is divided into 7" frames and a /N point FFT is taken for each
frame resulting in a N x 7" STFT matrix representing the sig-
nal. If the input to the network is the magnitude spectra of the
mixture represented by @, for time frame ¢ and the output pre-
dictions for a two source case are denoted by y1,; and yo,¢, then
the masks are denoted by

. |9,
My = — @)
|91, + |92,

)

Here, the multiplications and divisions are done element-wise.
The method used in [S] optimizes the masks along with the deep
neural network parameters; see Fig. [T} For this purpose, another
layer is added at the output which corresponds to the masked



predictions given by

[Fi,¢] @®)

Uit = — [OF: 7%
Yot = 1 + e =

This output layer is only dependent on the outputs of the pre-
vious layer y; ; and no weights are required to optimize for it.
Given the output predictions y; and y2, the network is trained
to minimize the error between the predicted sources from the
original sources. Also, for an effective separation, each pre-
dicted source should have maximum distance from the other
source, that is, the network should be discriminative. To ensure
the above conditions, the network is trained to optimize the fol-
lowing objective function

J = %(HyrﬂlI\%Hlyr@z\I%fwl\ylfﬂzllfvﬂ\lyr@lII%),

)
where «y controls the amount of discrimination the network can
provide between the two sources. The predicted magnitude
spectra ¥1, Y2 and the phase of the mixture spectrum are used to
create the STFT features of the separated sources. An inverse
STFT operation results gives the corresponding time domain
signals estimates ;, ¢ = 1, 2.

3.2. Our Framework (DF-DNN)

We denote the source signal by ys and the (combined) inter-
ferer by y,. We are not concerned about the interference that
can be introduced in estimated interferer from the source. An-
other hyper parameter p is used here that controls the relative
reconstruction of the source and the interferer. Further, since we
are only concerned with the orthogonal component of the inter-
ferer not affecting the source, the modified formulation used in
our framework is

1 i i i
= 5 (lys = GsllF + pllyn — GnllE = 1Gs ~ynoll7)- (10)

Here y,,., denotes the component of y, orthogonal to the
source subspace. Since the exact subspace of source is unknown
to us, we can at best approximate it using the source training
data ys. Hence, yn,, is also an approximation of the orthog-
onal component of the interferer. Algorithm |1 elaborates the
computation of Y, o.

Algorithm 1 find_orth

: Input: ys, yn

Ys = Ys — mean(ys);

: U,3,V =SVD(ys);

: total_energy = HEH%

d = no. of columns containing 0.95 * total_energy
S=U(,1:d)

Yn,o = Yn — PSyn

: Output: y,,
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3.3. Automatic Parameter Tuning

Another modification that we propose is that the hyper-
parameters v and u, which are fixed in joint separation, are
automatically searched in our formulation (I0) using the ratios
Te,Ts, Trn, We first defined in [6]. The error ratio is defined as:

Tre = = ,
Hys - ySSHF
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Figure 2: Block diagram for training DF-DNN

Figure 3: Change in ratios with

where 9y, and Y, are the estimates of ys when the input to
the network is y,, and y, respectively. 7. is a measure of the
interference that can be introduced in the source and a higher
value of r. implies lesser interference. Hence, that value of
~ that gives the maximum 7. is taken. The full procedure is
described in Algorithm [3] The energy ratios r, and r, are the
ratios between energies in the source and interferer predictions
when only only ys and y,, respectively are given as inputs to
the network, that is

_ [Fssllr

_ 2 R,
[Gon 7

Ts = = .
1GnsllF

Tn
Algorithm 2] describes the usage of rs and r, to find the hyper-
parameter p. For a fixed value of +, the network is trained for
successively increasing values of u. It is observed experimen-
tally that the energy ratio rs monotonically decreases and 7y,
increases with increasing values of y as depicted in Figure [3]
The search is continued until 7, is greater than r,, and it remains
more than a certain pre-decided threshold. The complete algo-
rithm is described in Algorithm [3} The steps involved in train-
ing of the auto-tuned network are shown in Figure[2] Once the
search for hyper-parameters is complete, the network is trained
so that it minimizes the objective function (1I0). The magnitude
spectra of the test mixture xies: iS then given as input to the
trained network to get the predicted source output.

4. Results
4.1. Data

The proposed source separation strategy was tested to separate
mixtures of 2, 3, and 4 speech signals. Two different datasets
namely TIMIT [12] and TSP [13] were used to create the mix-
tures, the signal to signal being 0 dB in each case. 8 male and 8
female speakers were taken from the TIMIT 16k dataset, which
consists of 10 sentences per speaker. Nine sentences, which
adds up to around 20 secs, were used up for training the net-
works and the remaining one was used as test case. The TSP
dataset, sampled at 44.1k, consists of 60 sentences per speaker
out of which 54 (about 125 secs) were used for training and re-
maining 6 were used as test cases. A total of 3 female and 3
male speakers were used from TSP dataset.



Algorithm 2 find_mu

¢ Input: ys, Yn, Yn,o, v
. Wset = set of possible values;
flag = 0;k = 1;
: 1 = length(pset)
: while flag == 0 do
B= piset (k)
Train network with objective with « as input fea-
tures.

8:  Findrs, 7y asin (12)

9:  if (L —1)rs <rporrs < rsmin or k == 1[ then
10: flag=1

11:  endif

122 k=k+1
13: end while

14: Output:

Algorithm 3 DF-DNN

: Input: ys, Yn, Yn,o» Trest

p=0;

Y = Ymins

While Ymin S Yy S “Ymax dO
Train the network with y, as input features.
Find r. as in
vy=v7+0.1

: end while

: 7y =y corresponding to max(re)

= find mu(ys, Yn, Yn,o, V)

: Train a network with objective (10)

: Input x4+ into the network to get estimated source output

Ys

AN ol S
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4.2. Parameters

For the TIMIT dataset, framing of the signals was done using
a Hamming window of length 512 with 50% overlap and a 512
point FFT was taken for each frame. A two hidden layer net-
work with 150 nodes per layer is used for this data. For the
TSP dataset, 1024 length frames with 50% overlap and then a
1024 point FFT for each frame was used to create the required
features. The two layer networks used for this dataset had 300
nodes in each layer. For training of the networks, a batch size of
10000 frames were used. Each hidden unit used RELU as the
activation function.

Algorithm E]uses a threshold 7, min for the ratio based pa-
rameters to search for appropriate p. This threshold was set
to be 8 for both the datasets. The jise: used in Algorithm [2]is
{0.1,0.5,1,2,5,10}. The limits for 7 in Algorithmare taken
to be Ymin = 0.1 and ymax = 0.5.

4.3. Performance

The performance of the proposed framework is evaluated on the
basis of SDR, SIR and SAR metric calculated using the BSS
evaluation toolbox [[L1]. Our experiments show that training a
network using DF-DNN, which separates one component at a
time out of the mixture while targeting the orthogonal compo-
nent of the combined interferer using as the objective func-
tion and performing a search for the suitable hyper-parameters,
results in better SDR and SAR while keeping the SIR nearly
similar as compared to training the network for joint separation
of all the sources underlying the mixture using a single network

trained with (O) as the objective function. SAR indicates the
amount of artifacts introduced in the separated source. Since
DF-DNN framework focuses on proper separation of only one
source at a time, it is evidently better than joint separation in
terms of reconstruction. Also as apparent from the numbers in
the tables[Tand 2] SIR is nearly same or slightly lower for all
separation cases. This is attributed to the imperfection in com-
puting the orthogonal component of interferer ¥, , as a result
of which some interference may be introduced in the recovered
source. The overall distortion, accounted for in SDR, is how-
ever improved.

Table 1: Average performance for TIMIT dataset

DF-DNN Joint
SDR 6.39 5.36
2 sources | SIR 9.72 9.226
SAR 9.89 8.57
SDR 2.62 2.29
3 sources SIR 5.77 5.87
SAR 6.97 6.1
SDR 0.07 -1.107
4 sources SIR 3.19 2.54
SAR 5.08 3.84

Table 2: Average performance for TSP dataset

DF-DNN Joint

SDR 7.19 6.65

2 sources | SIR 12.02 12.26
SAR 9.34 8.44

SDR 2.19 1.06

3 sources | SIR 6.4 6.61
SAR 5.47 3.58

SDR 0.42 -0.422

4 sources | SIR 4.57 5.22
SAR 4.14 2.4

5. Conclusion

We present a discriminative neural network based framework
for the SCSS problem where we target an automated training
system that can tune its parameters according to the mixture
it wants to separate. The framework also focuses on only one
source at a time thereby improving its reconstruction. We ap-
plied our framework on a two layer network and through exper-
iments show that our method improves the separation perfor-
mance compared to joint separation strategy.
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