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Abstract

In speech pathology, new assistive technologies using ASR

and machine learning approaches are being developed for de-

tecting speech disorder events. Classically-trained ASR model

tends to remove disfluencies from spoken utterances, due to its

focus on producing clean and readable text output. However,

diagnostic systems need to be able to track speech disfluencies,

such as stuttering events, in order to determine the severity level

of stuttering. To achieve this, ASR systems must be adapted

to recognise full verbatim utterances, including pseudo-words

and non-meaningful part-words. This work proposes a train-

ing regime to address this problem, and preserve a full verba-

tim output of stuttering speech. We use a lightly-supervised

approach using task-oriented lattices to recognise the stuttering

speech of children performing a standard reading task. This

approach improved the WER by 27.8% relative to a baseline

that uses word-lattices generated from the original prompt. The

improved results preserved 63% of stuttering events (includ-

ing sound, word, part-word and phrase repetition, and revision).

This work also proposes a separate correction layer on top of the

ASR that detects prolongation events (which are poorly recog-

nised by the ASR). This increases the percentage of preserved

stuttering events to 70%.

Index Terms: fluency disorder, speech language pathology,

children’s speech, stuttering detection

1. Introduction

Stuttering is a speech disfluency disorder that typically begins

in childhood. Stuttering manifests itself by four years of age

in 95% of sufferers [1], just as the child is learning to talk.

The prognosis for full recovery dramatically reduces if stut-

tering persists into adolescence; therefore it is critical to ad-

dress speech disorder problems in early childhood, since delays

in medical interventions can result in wide-ranging social and

mental difficulties [2, 3].

Clinicians usually diagnose stuttering by counting the num-

ber of stuttering events, to determine the severity of the condi-

tion [4, 5, 6]. This may done in real time, using a pen and paper,

while the child is reading a set passage, which in this work we

refer to as the original prompt (OP). The effectiveness of this

approach greatly depends on experience [7]. Alternatively, clin-

icians may first transcribe a recorded session and then classify

each stuttering event into one of several categories (including

different kinds of repetition, prolongation, blocks and interjec-

tions). This provides a more accurate diagnosis [8]. The process

of transcribing each spoken word takes time, effort and knowl-

edge of the relevant categories.

In this work, we explore the use of automatic speech

recognition (ASR) to create accurate transcriptions of stuttered

speech, which may be used for diagnosis and also may be

archived for further investigative research into the condition.

ASR is already widely used in speech pathology as an assis-

tive technology [9, 10]. However, it is well known that chil-

dren’s speech poses problems for ASR. Previous research has

reported poor performance of ASR systems when recognising

children’s speech [11, 12]. This is caused by factors such as

variable speech rate, or small vocal tract length [11]. Despite

substantial reported efforts directed towards improving ASR for

children’s speech, progress in this area is still limited. [13].

Detecting stuttering events in children’s speech is even

harder. We seek to address this problem using a two-fold ap-

proach that targets the most common stuttering events in record-

ings of children performing a reading task. The first part is an

ASR that uses task-oriented word (and sub-word) lattices to im-

prove the detection of certain classes of stuttering event (sound,

word, part-word and phrase repetition, and revision). The sec-

ond part is a prolongation detector, based on the correlation of

successive voiced frames, which identifies segments that corre-

spond to prolongation events. The output of this stage is added

as a correction layer to the ASR system.

The rest of the paper is organised as follows. Section 2

presents an overview of related studies that use various tech-

niques to detect stuttering. The speech corpus, annotation

guidelines and development methodology for the ASR used in

our approach are described in Section 3. The lattice re-scoring

approach is described in Section 4 and Section 5 explains the

prolongation detection system. The integrated diagnostic sys-

tem is described in Section 6. Section 7 presents the exper-

iments used in this study. Finally, Section 8 summarises our

findings and future work plans.

2. Literature review

It is commonly known that children have smaller vocal tracts,

which creates challenges in recognising their speech [14, 12].

Attempting to distinguish stuttering events adds to the complex-

ity of this task.

Early studies in disfluency detection that appeared to re-

port positive results [15, 16] lacked complete statistical find-

ings; therefore, their significance cannot be determined. Other

studies presented stuttering events in isolated speech segments

to an artificial neural network (ANN), such that the ANN was

actually performing a classification task, rather than recognition

in continuous speech [17, 18]. Further studies used a hybrid ap-

proach to detect stuttering in childrens reading tasks: Heeman et

al. [19, 20] merged ASR outputs with the clinician’s own man-

ual annotations to produce corrected transcripts of the stuttering

speech; this approach could not be described as fully automatic.

Two main approaches to prolongation detection are re-

ported in the literature. In the supervisory approach, the sound

signal is manually segmented into normal or prolongation seg-
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Figure 1: Corresponding FST graph for the prompt ’GARDEN WITH AN ELM TREE’. The arc GARDEN PW allows part-word

repetition and it could be [gAr] or [den] while GARDEN S is sound repetition and it could be [gA]. The go-back transition allows

word/phrase repetition and revision.

ments and the labelled data is then used to train classifiers, such

as SVM [15] or ANN [21]. In the unsupervised approach, quasi-

silent areas of the signal are first removed using an automatic

speech detection model and then the similarity between suc-

cessive frames is used to produce initial estimates of possible

prolongation segments. If the duration of the detected segment

is found to be greater than a predefined threshold, the segment

is labelled as a prolongation event; otherwise, it is considered a

normal segment [22].

3. Data

3.1. Corpora of children’s speech

The present study is based on a standard reading task that is used

by clinicians to diagnose stuttering in children. For training

purposes, we obtained all of the recordings of children’s read

speech from the UCLASS stuttering corpus, UCLASS Release

Two [23]. It contained 107 recordings of readings contributed

by 40 different speakers. We transcribed 48 speech samples

(totalling 120 minutes) to use in the current research. The data

was divided into 40 samples used as a training set, 4 samples

used as a test set and 4 samples used for a development set.

Each speaker read a passage once. To improve the ASR model,

7 hours from the PF-Star [24] corpus of children’s read speech

were added to the training set.

3.2. Data transcription and annotation

Table 1: Stuttering types that considered in this study with their

corresponding abbreviations.

Label Stuttering Type

S Sound repetitions

PW Part-word repetitions

W Word repetitions

PH Phrase repetitions

R Revision repetitions

P Prolongation

These 48 recordings did not have any associated transcrip-

tions. However, UCLASS Release One [23] contains another

dataset of spontaneous stuttering speech, for which 31 record-

ings had transcriptions. We have made a full verbatim transcrip-

tion of the read speech dataset following the same conventions

used for this subset. Transcriptions were orthographic, and in-

cluded conventional forms to represent stuttering dysfluencies,

for example: This is a a a amazing.

The annotation approach followed in this study is the same

approach followed in our previous work [25] and it is the one

proposed by Yairi and Ambrose [26]. In this study, all types

of stuttering were considered except the interjection and block

types. All stuttering types examined in the study are listed with

their corresponding abbreviations in Table 1.

4. Lightly-supervised lattice decoding

Given an approximate transcription (close to a manual transcript

but not exact), a more accurate transcription can be generated

using a biased language model (LM). This approach is known

as a lightly supervised approach. It has been used successfully

to generate improved transcriptions for acoustic model training,

so avoiding the need for expensive manual human transcription

[27, 28, 29]. It has also been used to align and correct approxi-

mate transcriptions of long audio recordings [30], and for audio

indexing and displaying subtitles. In a tutoring application, this

approach was used by [31] to track and align a child’s read pas-

sage.

The current work used a lightly supervised approach to

track and identify stuttering events in a reading task. We used

the original clean prompt (OP) as an approximation of a human

manual transcript (that should include stuttering events). An

initial decoding run used the draft ASR hypothesis to automat-

ically align with the OP by dynamic programming. This step

eased the merging of several hypothesised segments into the

corresponding original prompt utterance. In the second stage,

we used task-oriented finite state transducers (FST) for second-

pass decoding. These task-oriented lattices were automatically

generated from the OP and weights were tuned to allow for pos-

sible stuttering events. Figure 1 demonstrates a lattice that was

generated for the OP ’garden with an elm tree’. This can be

considered a forced alignment with additional features. A set

of arcs were added to each word in the generated lattice. The

first two arcs allowed multiple occurrences of sound and part-

word repetitions. Sound repetitions are represented by the suffix

S and include all repeated sounds that could occur in the begin-

ning of the word, such as ga ga in garden. Part-word repetitions

are represented by the suffix PW and include all repeated syl-

lable that could occur in the word garden. Traversing go-back

arcs allowed for the possibility of both word/phrase repetitions

and revisions, such as ’garden with garden with’.

5. Prolongation detection system

Whereas ASR is highly effective in identifying segments clas-

sified by frequency-based features, it is less successful in iden-

tifying segments classified by time-based features, such as pro-

longation events, e.g. ’mmmommy’. To handle this, we used

a separate autocorrelation algorithm, which measured the sim-

ilarity between successive speech frames and proposed prolon-

gation events as a correction to the ASR word lattice. Stutter-

ers usually have a lower speaking rate than normal speakers, so

thresholds for detecting prolongations had to account for natu-

ral variations in fluency and speaking rate on different occasions

[32]. We followed the unsupervised approach of [22, 33], which

uses two thresholds to decide whether two successive frames
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Figure 2: Prolongation detection. (a) Speech sample ’may not’

with prolongation in letter ’n’ in word ’not’ (b) highly similar

segments, and (c) detected prolonged segment which is longer

than threshold.

were similar, and whether the duration of similar frames was

sufficient to count as a prolongation. We found empirically that

0.9 was the best value for the first; but the second threshold had

to be set dynamically, according to speaking rate.

Our prolongation detector used a prior filter to mark frames

judged to be silence (the ’vadsohn’ voice activity detector from

the ’voicebox’ toolbox [34]), in order to decrease the incidence

of false alarms. It then used autocorrelation to measure the sim-

ilarity between speech frames as a function of the lag, to de-

tect prolongations. The length threshold for accepting candi-

date prolongation events was then normalised by the speaking

rate, in order to discount false alarms, whose length fell below

the threshold. The speaking rate detector used smoothed short-

term energy and zero-crossing rates to detect a syllable when

the energy reached a maximum in the absence of a peak in the

zero-crossing rate. This gave accurate enough estimates of syl-

lables and informed the speaking rate.

Figure 3: An example of syllable counting method. Solid line,

and dashed line are energy signal, and zero-crossing rate, re-

spectively. Circle marks are considered in the syllable counting

process.

6. Integrated system

The proposed integrated system is presented in Figure 4. The

speech signals were initially parameterised to mel-frequency

cepstral coefficient (MFCC) feature sets. Subsequently, the

MFCC frames were analyzed in parallel by a feature-based ASR

trained on stuttering speech and by an autocorrelation-based

prolongation detector. The ASR produced a transcription that

Figure 4: Main stages of the proposed integrated system

contained most types of stuttering event, such as sound, part-

word, word or phrase repetitions and revisions, but not pro-

longations. The prolongation detector acted in parallel to de-

tect prolongation events and served as a correction layer for the

ASR. Thereafter, all detected prolonged segments were aligned

with the ASR-output to produce a detailed verbatim transcript

containing stuttering events.

7. Experiments

The following section presents our experiments on UCLASS

data for detecting stuttering events using the method discussed

in Sections 4 and 6. We used the Kaldi ASR toolkit [35] to train

the acoustic model, following the WSJ recipe. In the following

experiments, we evaluated the systems performance on sound

and word repetitions, revision and prolongation. While the

system could have detected part-word and phrase repetitions,

these types of stuttering event were not present in the evalua-

tion data. Below, we use the conventional WordErrorRate to

measure decoded output against an accurate manual transcrip-

tion (including stuttering events), MissRate to measure the

count of missed stuttering events as a fraction of all events, and

FalsePositiveRate to measure the count of false alarms as a

fraction of the number of original words.

7.1. Baseline experiments

In normal ASR systems, a statistically-trained language model

(LM) always outperforms a specially-constructed lattice, due to

the flexibility given to the ASR system to determine the best-

matched word sequences. However, our experiments show that

task-specific lattices perform better when seeking to detect rare

stuttering events. Our initial experiments evaluated the perfor-

mance of the ASR when the LM relied on the original prompt

(OP) only. In the first experiment, we evaluated the ASRs per-

formance when applying a statistical LM (tri-gram) that had
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Table 2: WER, miss rate (misses) and false positive rate (FPR) on the test set

Measures % WER misses FPR misses FPR misses FPR misses FPR

Stuttering-type Sound repetition Word repetition Revision AVG

Statistical LM from stuttered training data 7.25 90% 0% 40% 0.29% 50% 0% 68% 0.29%

Task-oriented lattices 5.7 60% 0.59% 0% 0.29% 25% 0% 37% 0.89%

been built from the OP. The obtained WER was 8%. As ex-

pected, the results confirmed that the ASR, when built from the

OP, tended to delete all stuttering events. Thus, the miss rate

was 100%. In a second experiment, the lattices were rescored

using a deterministic LM that was created from the OP with no

additional features. The obtained WER was 7.9% without any

stuttering recognition.

7.2. Decoding with task-oriented lattices

To evaluate the performance of the ASR system in detecting

stuttering events, we used similar criteria to those applied in the

NIST scoring tool [36]: insertions of stuttering events were con-

sidered false alarms, deletions were considered misses and the

substitution of detected events by events from another stuttering

category were also misses.

The results presented in Table 2 compare the ability of an

ASR with a statistical LM that was trained on stuttering data,

versus an ASR using task-specific lattices. As expected, a

slight improvement (7.25%) was seen after training the statis-

tical LM on stuttering data, as opposed to OP data. Although

the ASR, after being retrained on stuttering data, was able to

detect some stuttering events, the miss rate was 68%, which

is still high. However, after re-scoring the word lattices using

the task-oriented approach, the WER improved to 5.7, with a

45.5% improvement in the miss-rate compared to the statistical

LM. Using the re-scoring approach, we preserved 63% of the

stuttering events.

The least-well detected events were sound repetitions,

where the miss rate reached 60%. A detailed investiga-

tion showed that these deleted sounds came from low-quality

recordings. Additionally, these sounds were judged to be barely

recognisable even by humans. Word repetitions were all suc-

cessfully detected, with no misses; whereas the system missed

25% of the revision type. As shown in the revision example

in Figure 5 (a), the ASR detected revisions, even when a word

from the revised phrase was deleted. By contrast, the average

false alarm rate was 0.89%, which is considered relatively low.

This was mainly due to the constraints applied in each task-

specific lattice.

Figure 5 contrasts the decoding behaviour of a task-specific

lattice with stuttering arcs (a) against the deterministic lattice

built from the OP (b), to show how adding the stuttering arcs

allows successful detection of stuttering, versus no detection.

Task-specific lattices are possibly over-constrained, in that they

will not detect word insertions or substitutions, such as ’I’ in-

stead of ’he’, which will be deleted in the output. While this

worsens the WER (compared to a statistically-trained LM), it

does not impact on the detection of stuttering events. Word-

substitution happens naturally in children’s speech [37], be-

cause the child often anticipates the next word. This behaviour

is neither considered a revision-incomplete phrase, nor another

category of stuttering event.

Figure 5: Decoding, (a) example showing the ability of the ASR

to detect stuttering events after applying task-oriented lattices;

(b) example showing the deletion of stuttering events on the

baseline ASR.

7.3. Integration with prolongation detection system

The prolongation detector was evaluated on the test set. It suc-

cessfully detected all prolongation events and had a 0% miss

rate. From the results, it was clear that the detection of simi-

larly correlated successive frames resulted in the effective iden-

tification of prolongation during continuous speech. However,

artefact noises, such as background noises during the recording

and heavy breathing, were still erroneously identified as prolon-

gation. Using this approach resulted in a 5.3% false alarm rate.

In the future, all detected false alarms could be minimised by

applying a better silence remover.

A full verbatim translation, which was obtained after align-

ing the prolonged segment with the transcription that was pro-

duced from the ASR, preserved a total of 70% of stuttering

events with a 6.25% false alarm rate. Although the false alarm

rate increased after integrating systems, applying a better noise

remover in the future could reduce the effects of this problem.

8. Conclusions and future work

Identifying stuttering events in children’s speech is a hard task,

due to the lack of available data needed for conventional statis-

tical training methods. The rarity of particular stuttering events

meant that these would most likely be deleted in the transcript.

We addressed this problem initially using a lightly-supervised

ASR with task-specific lattice re-scoring, which greatly in-

creased the detection of many classes of stuttering event, apart

from prolongations. A different approach was needed to de-

tect prolongations, based on the correlation of successive voiced

frames. The output of this stage was added as a correction layer

to the ASR system. For future work, we could minimise false

alarms in the prolongation detector by applying a better silence

remover. Also, we plan to add more features to the task-oriented

lattice, in order to attempt to recognise interjection events.
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