
An Efficient Approach to Encoding Context for Spoken Language
Understanding

Raghav Gupta, Abhinav Rastogi, Dilek Hakkani-Tür

Google AI, Mountain View
raghavgupta@google.com, abhirast@google.com, dilek@ieee.org

Abstract
In task-oriented dialogue systems, spoken language understand-
ing, or SLU, refers to the task of parsing natural language user
utterances into semantic frames. Making use of context from
prior dialogue history holds the key to more effective SLU. State
of the art approaches to SLU use memory networks to encode
context by processing multiple utterances from the dialogue at
each turn, resulting in significant trade-offs between accuracy
and computational efficiency. On the other hand, downstream
components like the dialogue state tracker (DST) already keep
track of the dialogue state, which can serve as a summary of the
dialogue history. In this work, we propose an efficient approach
to encoding context from prior utterances for SLU. More specif-
ically, our architecture includes a separate recurrent neural net-
work (RNN) based encoding module that accumulates dialogue
context to guide the frame parsing sub-tasks and can be shared
between SLU and DST. In our experiments, we demonstrate the
effectiveness of our approach on dialogues from two domains.
Index Terms: spoken language understanding, dialogue sys-
tems, slot-filling, natural language understanding

1. Introduction
Task-oriented dialogue systems assist users with accomplish-
ing tasks, such as making restaurant reservations or booking
flights, by interacting with them in natural language. The capa-
bility to identify task-specific semantics is a key requirement for
these systems. This is accomplished in the spoken language un-
derstanding (SLU) module, which typically parses natural lan-
guage user utterances into semantic frames, composed of user
intent, dialogue acts and slots [1], that can be processed by
downstream dialogue system components. An example seman-
tic frame is shown for a restaurant reservation query in Figure 1.
It is common to model intent, dialogue act and slot prediction
jointly [2, 3, 4, 5], which is a direction we follow.

Much prior research into SLU has focused on single-turn
language understanding, where the system receives only the
user utterance and, possibly, external contextual features such
as knowledge base annotations [6] and semantic context from
the frame [7], as inputs. However, task-oriented dialogue com-
monly involves the user and the system indulging in multiple
turns of back-and-forth conversation in order to achieve the user
goal. Multi-turn SLU presents different challenges, since the
user and the system may refer to entities introduced in prior dia-
logue turns, introducing ambiguity. For example, depending on
the context, “three” could indicate a date, time, number of tick-
ets or restaurant rating. Context from previous user and system
utterances in multi-turn dialogue has been shown to help resolve
these ambiguities [8, 9]. While initial work in this direction
used only the previous system turn for context, the advent of
deep learning techniques, memory networks [10] in particular,
facilitated incorporating context from the full dialogue history.

System: Which restaurant and for how many?
Dialogue Acts: request(#), request(rest)
User: Table for two at Olive Garden

↓ ↓ ↓ ↓ ↓ ↓
Slot: O O B-# O B-rest I-rest
Intent: reserve restaurant
Dialogue Acts: inform(#), inform(rest)

Figure 1: An example semantic frame with slot, intent and dia-
logue act annotations, following the IOB tagging scheme.

In essence, memory network-based approaches to multi-
turn SLU store prior user and system utterances and, at the cur-
rent turn, encode these into embeddings, using RNNs or other-
wise. These memory embeddings are then aggregated to obtain
the context vector which is used to condition the SLU output at
the current turn. This aggregation step could use an attention
mechanism based on cosine similarity with the user utterance
embedding [11]. Other approaches account for temporal order
of utterances in the memory by using an RNN for aggregation
[12] or decaying attention weights with time [13].

Although improving accuracy, using memory networks for
encoding context is not computationally efficient for two rea-
sons. First, at each turn, they process multiple history utterances
to obtain the SLU output. Secondly, dialogue context could po-
tentially be gleaned from existing dialogue system components
such as the dialogue state tracker [14, 15, 16]. Using a separate
SLU-specific network instead of reusing the context from DST
duplicates computation. Furthermore, such approaches work
with the natural language representation of the system utterance
to have a consistent representation with user turns, while ignor-
ing the system dialogue acts, which contain the same informa-
tion but are more structured and have a smaller vocabulary.

In this work, we investigate some effective approaches to
encoding dialogue context for SLU. Our contributions are two-
fold. First, we propose a novel approach to encoding system
dialogue acts for SLU, substituting the use of system utterances,
which allows reuse of the dialogue policy manager’s output to
obtain context. Second, we propose an efficient mechanism for
encoding dialogue context using hierarchical recurrent neural
networks which processes a single utterance at a time, yielding
computational gains without compromising performance. Our
representation of dialogue context is similar to those used in
dialogue state tracking models [17, 18, 19], thus enabling the
sharing of context representation between SLU and DST.

The rest of this paper is organized as follows: Section 2
describes the overall architecture of the model. This section
also formally describes the different tasks in SLU and outlines
their implementation. Section 3 presents the setup for training
and evaluation of our model. We conclude with experimental
results and discussion.

ar
X

iv
:1

80
7.

00
26

7v
1

 [
cs

.C
L

]
 1

 J
ul

 2
01

8

2. Approach
Let a dialogue be a sequence of T turns, each turn containing a
user utterance U t and a set of dialogue acts At corresponding
to the preceding system utterance. Figure 2 gives an overview
of our model architecture. For a new turn t, we use the system
act encoder (Section 2.1) to obtain a vector representation at

of all system dialogue acts At. We also use the utterance en-
coder (Section 2.2) to generate the user utterance encoding ut

by processing the user utterance token embeddings xt.
The dialogue encoder (Section 2.3) summarizes the content

of the dialogue by using at, ut, and its previous hidden state
st−1 to generate the dialogue context vector ot, and also update
its hidden state st. The dialogue context vector is then used for
user intent classification and dialogue act classification (Sec-
tion 2.4). The utterance encoder also generates updated token
embeddings, which are used by the slot tagger (Section 2.5) to
identify the slot values present in the user utterance.

Both the utterance encoder and slot tagger use bidirectional
RNNs. In addition to the aforementioned inputs, both RNNs
allow for additional inputs (positions A and C in Figure 2) and
external initialization of hidden states (positions B and D in
Figure 2), to incorporate context in our model. In the following
sections, we describe each of these components in detail.

2.1. System Act Encoder

The system act encoder encodes the set of dialogue acts At at
turn t into a vector at invariant to the order in which acts ap-
pear. This contrasts with a system utterance-based representa-
tion, which imposes an implicit ordering on the underlying acts.

Each system dialogue act contains an act type and optional
slot and value parameters. We categorize the dialogue acts
into two broad types - acts with an associated slot (and pos-
sibly a slot value i.e. request(time), negate(time=‘6
pm’)), and acts without (e.g. greeting). Note that the same
dialogue act can appear in the dialogue with or without an asso-
ciated slot (negate(time=‘6 pm’) versus negate).

For each slot type s in our slot vocabulary, we define a bi-
nary vector at

slot(s) of size |Asys|, where Asys is the set of
all system act types, indicating the presence of each system act
type with that slot associated, ignoring slot values for tractabil-
ity. Similarly, we define a binary vector at

ns of the same size
|Asys| indicating the presence of each system act without any
slot associated. For each slot s, we also define an embedding
es. The final encoding at is obtained from these vectors after
a shared feedforward layer on the slot-associated act features,
followed by averaging over the set of slots St mentioned so far,
concatenating with the no-slot act features and a second feed-
forward layer, as in equations 1 - 4. Parameters W a

1 , W a
2 , ba1 , ba2

and slot embeddings es are trainable; ⊕ denotes concatenation.

a′
t
slot(s) = at

slot(s)⊕ es (1)

a′′
t
slot(s) = ReLU(W a

1 · a′
t
slot(s) + ba1) (2)

at
comb =

(1

|St|
∑
s∈St

a′′
t
slot(s)

)
⊕ at

ns (3)

at = ReLU(W a
2 · at

comb + ba2) (4)

2.2. Utterance Encoder

The user utterance encoder takes in the list of user utterance to-
kens as input. Special tokens SOS and EOS are added at the be-
ginning and end of the token list. Let xt = {xt

m ∈ Rud ,∀ 0 ≤
m < M t} denote the utterance token embeddings, M t being

the number of tokens in the user utterance for turn t. We use a
single layer bi-directional RNN [20] using GRU cell [21] with
state size du to encode the user utterance.

ut, ut
o = BRNNGRU (x

t) (5)
The user utterance encoder outputs embedded representa-

tions ut ∈ R2du of the user utterance and ut
o = {ut

o,m ∈
R2du , 0 ≤ m < M t} of the individual utterance tokens, ob-
tained by concatenating the final states and the intermediate out-
puts of the forward and backward RNNs respectively.

2.3. Dialogue Encoder

The dialogue encoder incrementally generates the embedded
representation of the dialogue context at every turn. We imple-
ment the dialogue encoder using a unidirectional GRU RNN,
with each timestep corresponding to a dialogue turn. As shown
in Figure 2, it takes at⊕ut and its previous state st−1 as inputs
and outputs the updated state st and the encoded representa-
tion of the dialogue context ot (identical for a GRU RNN). This
method of encoding context is more efficient than other state of
the art approaches like memory networks which process multi-
ple utterances from the history to process each turn.

2.4. Intent and Dialogue Act Classification

The user intent helps to identify the APIs/databases which the
dialogue system should interact with. Intents are predicted at
each turn so that a change of intent during the dialogue can be
detected. We assume that each user utterance contains a single
intent and predict the distribution over all intents at each turn,
pti , using equation 6. On the other hand, dialogue act classifi-
cation is defined as a multi-label binary classification problem
to model the presence of multiple dialogue acts in an utterance.
Equation 7 is used to calculate pta, where pta(k) is the probabil-
ity of presence of dialogue act k in turn t.

pti = softmax(Wi · ot + bi) (6)

pta = sigmoid(Wa · ot + ba) (7)

In the above equations dim(pti) = |I|, Wi ∈ Rd×|I|,
Wa ∈ Rd×|Au|, bi ∈ R|I|, and ba ∈ R|Au|, I and Au denoting
the user intent and dialogue act vocabularies respectively and
d = dim(ot). During inference, we predict argmax(pti) as the
intent label and all dialogue acts with probability greater than
tu are associated with the utterance, where 0 < tu < 1.0 is a
hyperparameter tuned using the validation set.

2.5. Slot Tagging

Slot tagging is the task of identifying the values for different
slots present in the user utterance. We use the IOB (inside-
outside-begin) tagging scheme (Figure 1) to assign a label to
each token [22]. The slot tagger takes the token embeddings
output by the utterance encoder as input and encodes them us-
ing a bidirectional RNN [20] using LSTM cell [23] with hid-
den state size ds to generate token embeddings sto = {sto,m ∈
R2ds , 0 ≤ m < M t, M t being the number of user utterance
tokens in turn t. We use an LSTM cell instead of a GRU be-
cause it gave better results on the validation set. For the mth

token, we use the token vector sto,m to obtain the distribution
across all 2|S| + 1 IOB slot labels using equation 8, |S| be-
ing the total number of slot types. During inference, we predict
argmax(pts,m) as the slot label for the mth token.

pts,m = softmax(Ws · sto,m + bs) (8)

Figure 2: A generalized hierarchical recurrent neural network for joint prediction of user intent, dialogue acts (Section 2.4) and slot
spans (Section 2.5). Context vectors can be fed as additional RNN inputs (positions A and C) or can be used to initialize the RNN
hidden states (positions B and D).

3. Experiments

We use two representations of dialogue context: the dialogue
encoding vector ot−1 encodes all turns prior to the current turn
and the system intent vector at encodes the current turn system
utterance. Thus, ot−1 and at together encode the entire conver-
sation observed till the user utterance. These vectors can be fed
as inputs at multiple places in the SLU model. In this work, we
identify four positions to feed context i.e. positions A through D
in Figure 2. Positions A and C feed context vectors as additional
inputs at each RNN step whereas positions B and D use the con-
text vectors to initialize the hidden state of the two RNNs after
a linear projection to the hidden state dimension. We experi-
ment with the following configurations for integrating dialogue
context in our framework:

1. at only, No DE: We feed at, the system act encoding, in one
of positions A-D, omit the dialogue encoder, and instead use
ut, the utterance encoder’s final state, for intent and act pre-
diction. The best model for this configuration, as evaluated
on the validation set, had at fed in position B, and test set
results for this model are reported in row 7 of Table 1.

2. at only: We feed at into the dialogue encoder, and to one
of the positions A-D. Row 8 of Table 1 contains results for
the best model for this configuration, which had at fed in
position D of the slot tagger.

3. ot−1 only: We feed at into the dialogue encoder and ot−1,
the dialogue encoding from the previous turn, into the slot
tagger at positions C or D. Row 9 of Table 1 shows results
for the best model with ot−1 fed in position D.

4. at and ot−1: We feed at into the dialogue encoder, and ot−1

and at independently into one of positions C and D, 4 com-
binations in total. Row 10 of Table 1 shows results for the
best model with at fed in position C and ot−1 in position D.

3.1. Dataset

We obtain dialogues from the Simulated Dialogues dataset 1,
described in [24]. The dataset has dialogues from restaurant
(Sim-R, 11234 turns in 1116 training dialogues) and movie
(Sim-M, 3562 turns in 384 training dialogues) domains and a
total of three intents. The dialogues in the dataset consist of
12 slot types and 21 user dialogue act types, with 2 slot types
and 12 dialogue acts shared between Sim-R and Sim-M. One
challenging aspect of this dataset is the prevalence of unseen
entities. For instance, only 13% of the movie names in the vali-
dation and test sets are also present in the training set.

3.2. Baselines

We compare our models’ performance with the following four
baseline models:

1. NoContext: A two-layer stacked bidirectional RNN using
GRU and LSTM cells respectively, and no context.

2. PrevTurn: This is similar to the NoContext model. with a dif-
ferent bidirectional GRU layer encoding the previous system
turn, and this encoding being input to the slot tagging layer
of encoder i.e. position C in Figure 2.

3. MemNet: This is the system from [11], using cosine atten-
tion. For this model, we report metrics with models trained
with memory sizes of 6 and 20 turns. A memory size of 20,
while making the model slower, enables it to use the entire
dialogue history for most of the dialogues.

4. SDEN: This is the system from [12] which uses a bidirec-
tional GRU RNN for combining memory embeddings. We
report metrics for models with memory sizes 6 and 20.

1The dataset is available at http://github.com/google-research-
datasets/simulated-dialogue

http://github.com/google-research-datasets/simulated-dialogue
http://github.com/google-research-datasets/simulated-dialogue

Table 1: SLU results on test sets with baselines and our proposed architecture variants, when trained on Sim-M + Sim-R. For each
dataset, the columns indicate the intent accuracy, dialogue act F1 score, slot chunk F1 score and frame accuracy, in that order. The
Config column indicates the best obtained config for feeding context vectors for each experiment.

Model Config Sim-R Results Sim-M Results Overall Results
Intent Act Slot Frame Intent Act Slot Frame Intent Act Slot Frame

at ot−1 Acc F1 F1 Acc Acc F1 F1 Acc Acc F1 F1 Acc
1. NoContext - - 83.61 87.13 94.24 65.51 88.51 93.49 86.91 62.17 84.76 89.03 92.01 64.56
2. PrevTurn - - 99.37 90.10 94.96 86.93 99.12 93.58 88.63 77.27 99.31 91.13 93.06 84.19
3. MemNet-6 - - 99.75 92.90 94.42 88.33 99.12 95.71 89.76 79.11 99.68 93.74 93.03 85.71
4. MemNet-20 - - 99.67 95.67 94.28 89.52 98.76 96.25 90.70 80.35 99.29 95.85 93.21 86.92
5. SDEN-6 - - 99.76 93.14 95.83 88.74 99.74 95.02 88.60 79.11 99.76 93.70 93.66 86.01
6. SDEN-20 - - 99.84 94.43 94.81 89.46 99.60 97.56 90.93 82.55 99.81 95.38 93.65 87.50
7. at only, No DE B - 99.62 93.21 95.53 87.63 99.12 96.00 87.30 75.44 99.48 94.04 93.07 84.17
8. at only D - 99.98 95.42 95.38 89.26 99.71 96.35 91.58 83.36 99.92 95.70 94.22 87.58
9. ot−1 only - D 99.83 94.44 94.18 87.63 99.27 96.66 91.88 86.80 99.67 95.11 93.46 87.40
10. at and ot−1 C D 99.65 92.71 94.70 87.54 99.27 96.11 93.73 86.88 99.54 93.74 94.40 87.35

3.3. Training and Evaluation

We use sigmoid cross entropy loss for dialogue act classifica-
tion (since it is modeled as a multilabel binary classification
problem) and softmax cross entropy loss for intent classifica-
tion and slot tagging. During training, we minimize the sum of
the three constituent losses using the ADAM optimizer [25] for
150k training steps with a batch size of 10 dialogues.

To improve model performance in the presence of out of
vocabulary (OOV) tokens arising from entities not present in the
training set, we randomly replace tokens corresponding to slot
values in user utterance with a special OOV token with a value
dropout probability that linearly increases during training.

To find the best hyperparameter values, we perform grid
search over the token embedding size (∈ {64, 128, 256}),
learning rate (∈ [0.0001, 0.01]), maximum value dropout prob-
ability (∈ [0.2, 0.5]) and the intent prediction threshold (∈
{0.3, 0.4, 0.5}), for each model configuration listed in Section
3. The utterance encoder and slot tagger layer sizes are set equal
to the token embedding dimension, and that of the dialogue en-
coder to half this dimension. In Table 1, we report intent accu-
racy, dialogue act F1 score, slot chunk F1 score [22] and frame
accuracy on the test set for the best runs for each configuration
in Section 3 based on frame accuracy on the combined valida-
tion set, to avoid overfitting. A frame is considered correct if its
predicted intent, slots and acts are all correct.

4. Results and Discussion
Table 1 compares the baseline models with different variants of
our model. We observe that our models compare favorably to
the state of the art MemNet and SDEN baselines. The use of
context plays a crucial role across all datasets and tasks, espe-
cially for intent and dialogue act classification, giving an im-
provement of ∼15% and ∼5% respectively across all configu-
rations. For all subsequent discussion, we concentrate on frame
accuracy since it summarizes the performance across all tasks.

An important consideration is the computational efficiency
of the compared appraoches: memory network-based models
are expensive to run, since they process multiple utterances
from the dialogue history at every turn. In contrast, our ap-
proach only adds a two-layer feedforward network (the system
act encoder) and one step of a GRU cell (for the dialogue en-
coder) per turn to encode all context. Empirically, MemNet-6
and MemNet-20 experiments took roughly 4x and 12x more

time to train respectively than our slowest model containing
both the system act encoder and the dialogue encoder, on our
training setup. SDEN runs are slower than their MemNet coun-
terparts since they use RNNs for combining memory embed-
dings. In addition to being fast, our models generalize better on
the smaller Sim-M dataset, suggesting that memory network-
based models tend to be more data intensive.

Two interesting experiments to compare are rows 2 and 7
i.e. “PrevTurn” and “at only, No DE”; they both use context
only from the previous system utterance/acts, discarding the re-
maining turns. Our system act encoder, comprising only a two-
layer feedforward network, is in principle faster than the bidi-
rectional GRU that “PrevTurn” uses to encode the system ut-
terance. This notwithstanding, the similar performance of both
models suggests that using system dialogue acts for context is a
good alternative to using the corresponding system utterance.

Table 1 also lists the best configurations for feeding context
vectors at and ot−1. In general, we observe that feeding context
vectors as initial states to bidirectional RNNs (i.e. position D for
slot tagging plus a side input to the dialogue encoder, or posi-
tion B for all tasks in case of no dialogue encoder) yields better
results than feeding them as additional inputs at each RNN step
(positions C and A). This may be caused by the fact that our
context vectors do not vary with the user utterance tokens, be-
cause of which introducing them repeatedly is likely redundant.
For each experiment in Section 3, the differences between the
varying context position combinations are statistically signifi-
cant, as determined by McNemar’s test with p < 0.05.

Another interesting observation is that using ot−1 as com-
pared to at as additional context for the slot tagger does not im-
prove slot tagging performance. This indicates a strong corre-
spondence between the slots present in the system acts and those
mentioned in the user utterance i.e. the user is often responding
directly to the immediately prior system prompt, thereby reduc-
ing the dependence on context from the previous turns for the
slot tagging task.

To conclude, we present a fast and efficient approach to en-
coding context for SLU. Avoiding the significant per-turn over-
head of memory networks, our method accumulates dialogue
context one turn at a time, resulting in a faster and more gen-
eralizable model without any loss in accuracy. We also demon-
strate that using system dialogue acts is an efficientalternative
to using system utterances for context.

5. References
[1] G. Tur and R. De Mori, Spoken language understanding: Systems

for extracting semantic information from speech. John Wiley &
Sons, 2011.

[2] D. Hakkani-Tür, A. Celikyilmaz, Y.-N. Chen, J. Gao, L. Deng,
and Y.-Y. Wang, “Multi-domain joint semantic frame parsing us-
ing bi-directional rnn-lstm.” 2016.

[3] X. Zhang and H. Wang, “A joint model of intent determination
and slot filling for spoken language understanding.”

[4] B. Liu and I. Lane, “Attention-based recurrent neural network
models for joint intent detection and slot filling,” arXiv preprint
arXiv:1609.01454, 2016.

[5] P. Xu and R. Sarikaya, “Convolutional neural network based
triangular crf for joint intent detection and slot filling,” in Au-
tomatic Speech Recognition and Understanding (ASRU), 2013
IEEE Workshop on. IEEE, 2013, pp. 78–83.

[6] B. Dhingra, L. Li, X. Li, J. Gao, Y.-N. Chen, F. Ahmed, and
L. Deng, “Towards end-to-end reinforcement learning of dialogue
agents for information access,” in Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), vol. 1, 2017, pp. 484–495.

[7] Y. N. Dauphin, G. Tur, D. Hakkani-Tur, and L. Heck, “Zero-
shot learning for semantic utterance classification,” arXiv preprint
arXiv:1401.0509, 2013.

[8] A. Bhargava, A. Celikyilmaz, D. Hakkani-Tür, and R. Sarikaya,
“Easy contextual intent prediction and slot detection,” in Acous-
tics, Speech and Signal Processing (ICASSP), 2013 IEEE Inter-
national Conference on. IEEE, 2013, pp. 8337–8341.

[9] P. Xu and R. Sarikaya, “Contextual domain classification in spo-
ken language understanding systems using recurrent neural net-
work,” in Acoustics, Speech and Signal Processing (ICASSP),
2014 IEEE International Conference on. IEEE, 2014, pp. 136–
140.

[10] S. Sukhbaatar, J. Weston, R. Fergus et al., “End-to-end memory
networks,” in Advances in neural information processing systems,
2015, pp. 2440–2448.

[11] Y.-N. Chen, D. Hakkani-Tür, G. Tur, J. Gao, and L. Deng, “End-
to-end memory networks with knowledge carryover for multi-turn
spoken language understanding,” in Proceedings of The 17th An-
nual Meeting of the International Speech Communication Associ-
ation (INTERSPEECH). San Francisco, CA: ISCA, 2016.

[12] A. Bapna, G. Tur, D. Hakkani-Tur, and L. Heck, “Sequential di-
alogue context modeling for spoken language understanding,” in
Proceedings of the 18th Annual SIGdial Meeting on Discourse
and Dialogue, 2017, pp. 103–114.

[13] S.-Y. Su, P.-C. Yuan, and Y.-N. Chen, “How time matters: Learn-
ing time-decay attention for contextual spoken language under-
standing in dialogues,” in Proceedings of the 2018 Conference of
the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, To appear.

[14] M. Henderson, B. Thomson, and J. Williams, “The second dialog
state tracking challenge,” in 15th Annual Meeting of the Special
Interest Group on Discourse and Dialogue, vol. 263, 2014.

[15] M. Henderson, B. Thomson, and S. Young, “Word-based dialog
state tracking with recurrent neural networks,” in Proceedings of
the 15th Annual Meeting of the Special Interest Group on Dis-
course and Dialogue (SIGDIAL), 2014, pp. 292–299.

[16] N. Mrkšić, D. Ó. Séaghdha, T.-H. Wen, B. Thomson, and
S. Young, “Neural belief tracker: Data-driven dialogue state track-
ing,” in Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), vol. 1,
2017, pp. 1777–1788.

[17] K. Yoshino, T. Hiraoka, G. Neubig, and S. Nakamura, “Dialogue
state tracking using long short term memory neural networks,”
2016.

[18] B. Liu and I. Lane, “An end-to-end trainable neural network
model with belief tracking for task-oriented dialog,” in Proceed-
ings of Interspeech, 2017.

[19] J. D. Williams, “Web-style ranking and slu combination for dialog
state tracking,” in Proceedings of the 15th Annual Meeting of the
Special Interest Group on Discourse and Dialogue (SIGDIAL),
2014, pp. 282–291.

[20] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neu-
ral networks,” IEEE Transactions on Signal Processing, vol. 45,
no. 11, pp. 2673–2681, 1997.

[21] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase repre-
sentations using rnn encoder-decoder for statistical machine trans-
lation,” arXiv preprint arXiv:1406.1078, 2014.

[22] E. F. Tjong Kim Sang and S. Buchholz, “Introduction to the conll-
2000 shared task: Chunking,” in Proceedings of the 2nd workshop
on Learning language in logic and the 4th conference on Compu-
tational natural language learning-Volume 7. Association for
Computational Linguistics, 2000, pp. 127–132.

[23] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[24] P. Shah, D. Hakkani-Tür, G. Tur, A. Rastogi, A. Bapna, N. Nayak,
and L. Heck, “Building a conversational agent overnight with di-
alogue self-play,” arXiv preprint arXiv:1801.04871, 2017.

[25] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” arXiv preprint arXiv:1412.6980, 2014.

	1 Introduction
	2 Approach
	2.1 System Act Encoder
	2.2 Utterance Encoder
	2.3 Dialogue Encoder
	2.4 Intent and Dialogue Act Classification
	2.5 Slot Tagging

	3 Experiments
	3.1 Dataset
	3.2 Baselines
	3.3 Training and Evaluation

	4 Results and Discussion
	5 References

