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Abstract

In this work, we propose an ensemble of classifiers to distin-
guish between various degrees of abnormalities of the heart
using Phonocardiogram (PCG) signals acquired using digital
stethoscopes in a clinical setting, for the INTERSPEECH 2018
Computational Paralinguistics (ComParE) Heart Beats Sub-
Challenge. Our primary classification framework constitutes a
convolutional neural network with 1D-CNN time-convolution
(tConv) layers, which uses features transferred from a model
trained on the 2016 Physionet Heart Sound Database. We also
employ a Representation Learning (RL) approach to generate
features in an unsupervised manner using Deep Recurrent Au-
toencoders and use Support Vector Machine (SVM) and Lin-
ear Discriminant Analysis (LDA) classifiers. Finally, we utilize
an SVM classifier on a high-dimensional segment-level feature
extracted using various functionals on short-term acoustic fea-
tures, i.e., Low-Level Descriptors (LLD). An ensemble of the
three different approaches provides a relative improvement of
11.13% compared to our best single sub-system in terms of the
Unweighted Average Recall (UAR) performance metric on the
evaluation dataset.

Index Terms: Representation learning, Heart Sound Classifica-
tion, Time-convolutional Layers.

1. Introduction

Cardiac auscultation is the most practiced non-invasive and
cost-effective procedure for the early diagnosis of various heart
diseases. Effective cardiac auscultation requires trained physi-
cians, a resource which is limited especially in low-income
countries of the world [[1]]. This lack of skilled doctors opens up
opportunities for the development of machine learning based
assistive technologies for point-of-care diagnosis of heart dis-
eases. With the advent of smartphones and their increased com-
putational capabilities, machine learning based automated heart
sound classification systems implemented with a smart-phone
attachable digital stethoscope in the point-of-care locations can
be of significant impact for early diagnosis of cardiac diseases.

Automated classification of the PCG, i.e., the heart sound,
have been extensively studied and researched in the past few
decades. Previous research on automatic classification of heart
sounds can be broadly classified into two areas: (i) PCG seg-
mentation, i.e., detection of the first and second heart sounds
(S1 and S2), and (ii) detection of recordings as pathologic
or physiologic. For the latter application, researchers in the
past have utilized Artificial Neural Networks (ANN) [2], Sup-
port Vector Machines (SVM) [3]] and Hidden Markov Models
(HMM) [4]. In, the 2016 Physionet/CinC Challenge was orga-
nized and an archive of 4430 PCG recordings were released for
binary classification of normal and abnormal heart sounds. This
particular challenge encouraged new methods being utilized for

this task. Notable features used for this dataset included, time,
frequency and statistical features [S], Mel-frequency Cepstral
Coefficients (MFCC) [6], and Continuous Wavelet Transform
(CWT). Most of the systems adopted the segmentation algo-
rithm developed by Springer et al. [7]. Among the top scoring
systems, Maknickas et al. [§] extracted Mel-frequency Spec-
tral Coefficients (MFSC) from unsegmented signals and used a
2D CNN. Plesinger et al. [9]] proposed a novel segmentation
method, a histogram based feature selection method and pa-
rameterized sigmoid functions per feature, to discriminate be-
tween classes. Various machine learning algorithms including
SVM [10], k-Nearest Neighbor (k-NN) [6], Multilayer Percep-
tron (MLP) [11,112]], Random Forest [3]], 1D [13] and 2D CNNs
[8], and Recurrent Neural Network (RNN) [14] were employed
in the challenge. A good number of submissions used an en-
semble of classifiers with a voting algorithm [S|11,[12|13]. The
best performing system was presented by Potes et al. [13] that
combined a 1D-CNN model with an Adaboost-Abstain classi-
fier using a threshold based voting algorithm.

In audio signal processing, filter-banks are commonly em-
ployed as a standard pre-processing step during feature extrac-
tion. This was done in [13]] before the 1D-CNN model. We
propose a CNN based Finite Impulse Response (FIR) filter-
bank front-end, that automatically learns frequency character-
istics of the FIR filterbank utilizing time-convolution (tConv)
layers. The INTERSPEECH ComParE Heart Sound Shenzhen
(HSS) Dataset is a relatively smaller corpus, with three class
labels according to the degree of the disease; while the Phys-
ionet Heart Sounds Dataset has binary annotations. We train
our model on the Physionet Challenge Dataset and transfer the
learned weights for the three class classification task. We also
avail unsupervised/semi-supervised learning to find latent rep-
resentations of PCG.

2. Data Preparation
2.1. Datasets
2.1.1. The INTERSPEECH 2018 ComParE HSS Dataset

The INTERSPEECH 2018 ComParE Challenge [15]] released
the Heart Sounds Shenzhen PCG signal corpus containing 845
recordings from 170 different subjects. The recordings were
collected from patients with coronary heart disease, arrhythmia,
valvular heart disease, congenital heart disease, etc. The PCG
recordings are sampled at 4 KHz and annotated with three class
labels: (i) Normal, (ii) Mild, and (iii) Moderate/Severe (heart
disease).

2.1.2. PhysioNet/CinC Challenge Dataset

The 2016 PhysioNet/CinC Challenge dataset [16] contains PCG
recordings from seven different research groups. The train-
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Figure 1: Dataset preparation for transfer Learning, super-
vised Learning and representation learning using Physionet

and ComParE corpus.

ing data contains 3153 heart sound recordings collected from
764 patients with a total number of 84,425 annotated car-
diac cycles ranging from 35 to 159 bpm. Cardiac Anomalies
range from coronary heart disease, arrhythmia, valvular steno-
sis/regurgitation, etc. The dataset has 2488 and 665 PCG sig-
nals annotated as Normal and Abnormal, respectively. The
Aristotle University of Thessaloniki heart sounds database (AU-
THHSDB) [17]], a subset of the Physionet corpus (training-c),
contains additional metadata based on the severity of the heart
diseases. The recordings are sampled at 2000 Hz.

2.2. Data Imbalance Problem

The INTERSPEECH ComParE HSS Dataset suffers from sig-
nificant class imbalance in its training set, which could intro-
duce performance reduction for both classical machine learn-
ing and deep learning based classifiers. The training set is
divided in a ratio of 16.7/55.0/28.3 percent between the Nor-
mallMild/Severe classes, with more than half of the training data
comprising of PCG signals annotated as Mild”. The result of the
imbalance was evident in our recall metrics which are discussed
later in Sec. [7

2.3. Fused Training Sets

To cope with the class imbalance and increase the volume of
the training data, we created 3 new fused training corpora out
of the INTERSPEECH ComParE HSS Dataset and the Phy-
sionet/CinC Challenge Dataset training partitions. The AU-
THHSDB (training-c) partition of the dataset was relabeled us-
ing the metadata files provided to have 7 Normal, 8 Mild and
16 Severe annotated recordings. The dataset distributions are
depicted in Fig. The fused datasets prepared for Transfer
Learning (TL), Supervised Learning (SL) and Representation
Learning (RL) will be referred to as TL-Data, SL-Data and RL-
Data respectively.

3. Proposed Transfer Learning Framework
3.1. 1D-CNN Model for Abnormal Heart Sound Detection

The Physionet/CinC Challenge PCG database is a larger cor-
pus with Normal and Abnormal labels designed for a binary
classification task. We propose a 1D-CNN Neural Network im-
proving the top scoring model [[13]] of the Physionet/CinC 2016
challenge. First, the signal is re-sampled to 1000 Hz (after an
anti-aliasing filter) and decomposed into four frequency bands
(25 — 45, 45 — 80, 80 — 200, 200 — 500 Hz). Next, spikes in
the recordings are removed [18] and PCG segmentation is per-
formed to extract cardiac cycles [7]. Taking into account the

longest cardiac cycle in the corpus, each cardiac cycle is zero
padded to be 2.5s in length. Four different frequency bands
of extracted from each cardiac cycle are fed into four different
input branches of the 1D-CNN architecture. Each branch has
two convolutional layers of kernel size 5, followed by a Rec-
tified Linear Unit (ReLU) activation and a max-pooling of 2.
The first convolutional layer has 8 filters while the second has
4. The outputs of the four branches are fed to an MLP net-
work after being flattened and concatenated. The MLP network
has a hidden layer of 20 neurons with ReL U activation and two
output neurons with softmax activation. The resulting model
provides predictions on every heart sound segment (cardiac cy-
cle), which are averaged over the entire recording and rounded
for inference.

3.2. Filter-bank Learning wusing Time-Convolutional
(tConv) Layers

For a causal discrete-time FIR filter of order /N with filter coef-
ficients bo, b1, . . . b, the output signal samples y[n] is obtained
by a weighted sum of the most recent samples of the input signal
z[n]. This can be expressed as:

yln] = box[n]+bizn—1]+ ... + byzx[n — N]
= Zbix[nfi]. )

A 1D-CNN performs cross-correlation between its input and
its kernel using a spatially contiguous receptive field of kernel
neurons. The output of a convolutional layer, with a kernel of
odd length NV + 1, can be expressed as:

yln] =bozn+ J)+bizn+ 5 — 1]+ ...+ byz[n] + ...
2
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where bo, b1, ...bn are the kernel weights. Considering a causal
system the output of the convolutional layer becomes:

yn—Fl=0o <ﬂ—|—me[n—i]) 3)

=0

where o(-) is the activation function and § is the bias term.
Therefore, a 1D convolutional layer with linear activation and
zero bias, acts as an FIR filter with an added delay of N/2
[19]. We denote such layers as time-convolutional (tConv) lay-
ers [20]. Naturally, the kernels of these layers (similar to filter-
bank coefficients) can be updated with Stochastic Gradient De-
scent (SGD). These layers therefore replace the static filters that
decompose the pre-processed signal into four bands (Sec. B.1).
We use a special variant of the tConv layer that learns coeffi-
cients with a linear phase (LP) response.

3.3. Transfer Learning from Physionet Model

Our proposed tConv Neural Network is trained on the Physionet
CinC Challenge Dataset with four-fold in house cross validation
[21]. The model achieves a mean cross-validation accuracy of
87.10% and Recall of 90.91%. The weights up-to the flatten
layer are transferred [22] to a new convolutional neural network
architecture with a fully connected layer with two hidden lay-
ers of 239 and 20 neurons and 3 output neurons for Normal,
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Figure 2: Proposed architecture incorporating tCony layers for Transfer Learning.

Mild and Severe classes (Fig. [). The model weights are fine-
tuned on TL-Data. TL-Data comprises of all of the samples
from the INTERSPEECH ComParE Dataset and the Normal
signals from the Physionet in house validation fold, from which
the trained weights are transferred. We chose the weights of a
model trained on Fold 1 for better per cardiac cycle validation
accuracy. The cross-entropy loss is optimized with a stochastic
gradient descent optimizer with a learning rate of 4.5 x 1079,
Dropout of 0.5 is applied to all of the layers except for the out-
put layer. The model hyperparameters were not optimized while
fine-tuning with TL-Data. The cost function was weighted to
account for the class imbalance.

4. Representation Learning (RL) with
Recurrent Autoencoders

Hlh
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Figure 3: Reconstructed Mel-spectrogram of recording thresh-
olded to reduce background noise a) below -30 dB b) below -45
dB

Representation learning is particularly of interest when a
large amount of unlabeled data is available compared to a
smaller labeled dataset. Considering the two corpora at hand,
we approach the problem from a semi-supervised representa-
tion learning perspective to train recurrent sequence to sequence
autoencoders [23] on unlabeled RL-Data (Sec. [2:3) and then
use lower dimensional representations of SL-Data to train clas-
sifiers. Sequence-to-sequence learning is about translating se-
quences from one domain to another. Unsupervised Sequence-
to-sequence representation learning was popularized in the use
of machine translation [24]. It has also been employed for audio
classification with success [23]]. It offers the chance of resolv-

ing the overfitting problem experienced when training an end to
end deep learning model.

First, mel-spectrogram of 126 bands are extracted with a
window size of 320ms with 50% overlap. The raw audio files
are clipped to 30 seconds in length. To reduce background
noise, the spectrogram is thresholded below —30,—45,—60 and
—75 dB. This results in four different spectrograms. The model
is trained on all four of these separately, which results in four
different feature sets. Both the encoder and decoder Recurrent
Neural Network had 2 hidden layers with 256 Gated Recurrent
Units each. The final hidden states of all the GRUs are concate-
nated into a 1024 dimensional feature vector. Fig. E| portrays
the reconstructed outputs for mel-spectrograms clipped below
—30 dB and —45 dB. Four different feature vectors for the four
different spectrograms are also concatenated to form fused fea-
tures. Feature representations of SL-Data were used to train
classifiers. The model is deployed and trained using the AUDEEP

toolkit [26]].

5. Supervised Learning with Segment-level
Features

5.1. ComParE Acoustic Feature Set

In this sub-system, we utilize the acoustic feature set described
in [27]]. This feature set contains 6373 static features resulting
from the computation of various functionals over LLD param-
eters [13]. The LLD parameters and functionals utilized are
described in [27]. The features are extracted using the openS-
MILE toolkit [28].

5.2. Classifiers

We have implemented several machine learning algorithms for
heart sound classification from the ComParE Acoustic feature
set. The evaluated classifiers include: Support Vector Machine
(SVM), Linear Discriminant Analysis (LDA), and Multi-Layer
Perceptron (MLP). SVM classifier with complexity C= 10~*
and tolerance L= 0.3 outperformed the other classifiers.

6. Experimental Evaluation and Results

The evaluation metric for the INTERSPEECH ComParE Chal-
lenge is Unweighted Average Recall (UAR) since the datasets
are class unbalanced. We also monitor classwise recall and
accuracy for evaluation of model performance. Performance
metrics on both the development and test set are listed on Ta-
ble [I] with the training datasets mentioned. The Comp-SVM
model, evaluated on the ComParE test set, acquired 45.9% UAR
and 51.5% overall accuracy. Our transfer learning based model



Table 1: Performance evaluation of proposed methods com-
pared to the official baseline systems.

Baseline Systems
Model Name Dataset Features Classifiers | UAR (%) dev | Acc. (%) dev | UAR (%) test
INTERSPEECH ComParE
OPENSMILE[I3] ComParE HSS Feature set SVM 50.3 522 46.4
Fused
- INTERSPEECH
AUDEEP[I3] ComParE HSS Autoencoder SVM 38.6 - 479
Features
INTERSPEECH
END2YOU[TS] | " bk hss CNN LSTM 412 - 37.7
Fusion of best 2 systems [13] - - 56.2
Proposed Systems
Model Name Dataset Features Classifiers | UAR (%) dev | Acc. (%) dev | UAR (%) test
INTERSPEECH | ComParE
ComP-SVM ComPark HSS Feature set SVM 52.1 53.9 459
—60 dB
RL-SVM RL-Data Autoencoder SVM 429 489
SL-Data
Features
—60 & —75dB
RL-LDA RL-Data Autoencoder LDA 514 544 344
SL-Data
Features
tConv
LP-tConv TL-Data CNN MLP 44.6 56.1 39.5
System Ensembles
Ensemble System Name [ UAR (%) dev_| Acc. (%) dev_ | UAR (%) test
Fusion of Comp-SVM, RL-SVM and LP-tConv models | 5792 ] 63.9 [ 393
Hi with Fusion | 5793 | 642 | 4l
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Figure 4: Mean values of the 4096 features learned from the 4
mel-spectrograms by the RNN-Autoencoders.

with a variant of our proposed tConv layer acquired improved
performance compared to the end to end deep learning base-
line (END2YOU). Training on a larger corpus has provided an
improved performance on the development set using represen-
tation learning with significantly reduced performance on the
test set. Comp-SVM, RL-SVM and LP-tConv models are en-
sembled using a majority voting algorithm. It yields UAR of
57.92% on the development set, and UAR of 39.2% on the
test set. To improve the Normal hit rate a hierarchical deci-
sion system is implemented where an LP-tConv network trained
on Physionet/Cinc Database is first used for binary classifica-
tion between Normal and Abnormal recordings. Following that,
an ensemble of Comp-SVM, RL-SVM and LP-tConv is used
to classify between Mild and Severe classes. The hierarchical
model has acquired a dev set UAR of 57.93% and test set UAR
of 42.1%.

7. Discussion

Our proposed end to end LP-tConv model superseded the
test set metric for the standalone baseline end to end model
(END2YOU). Other proposed systems failed to beat the base-
line systems test set UAR while it outperformed the develop-
ment set UAR. This could indicate overfitting on the develop-
ment set. On the other hand, for the baseline systems a tendency
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Figure 5: Recall scores obtained on the validation data after
each training epoch. A steady increase in the mild recall is
visible while recall for the other classes are steadily decreasing.

0.1

of overfitting on the test set was visible. This is because the in-
dividual approach/hyperparameters performing best on the test
set has been chosen as baselines [15]. A generalized feature-
classifier system should yield similar UAR on both development
and test dataset if the development and test data distributions
are consistent. This was noticeable only for the openSMILE
features with an SVM classifier.

More interesting insights were revealed during the training
of the recurrent autoencoders. The lower dimensional represen-
tations learned were different for the Physionet CinC Challenge
database and the INTERSPEECH ComParE HSS database. The
RL model was trained on both RL-data and the INTERSPEECH
HSS database. Fig. [] shows the mean of the concatenated
(fused) representations learned from the 4 mel-spectrograms.
A distinct difference can be visualized from feature dimension
1700. The last 2048 dimensions are representations learned
from the -60 dB and the -75 dB mel-spectrograms, these are the
dimensions where the feature means deviate the most. Quite
interestingly, the -60 dB and -75 dB spectrogram features yield
better results compared to the others. After training the model
with preprocessed signals (resampled to 1000 Hz and band-pass
filtered between 20-400 Hz), the representation differences in
the mean reduced for certain dimensions. This could mean
that the corresponding dimensions represent information from
the higher end of the frequency spectrum. Another observation
experienced during experimentation was the Normal Recall vs
Mild/Severe Recall trade-off. While training an end to end LP-
tConv model, we have seen a divergent behavior between the
normal and mild/severe recall metrics (Fig. [B) which persisted
even when the percentage of Normal recordings were more than
Mild recordings.

8. Conclusions

In this work, we have presented an ensemble of classifiers
for automatically detecting abnormal heart sounds of different
severity levels for the INTERSPEECH 2018 ComParE Heart
Beats Sub-Challenge. The primary framework was based on
transfer learning of parameters from a 1D-CNN model pre-
trained on the Physionet HS Classification dataset. We have also
deployed unsupervised feature representation learning from
mel-spectrograms using a deep autoencoder based architec-
ture. Finally, we have also implemented a segment-level feature
based system using the ComParE feature set and an SVM clas-
sifier. The final hierarchical ensemble of the systems provided
with a UAR of 57.9% on the development dataset and 42.1% on
the test dataset.
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