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Abstract
Speaker diarization determines who spoke and when? in an
audio stream. In this study, we propose a model-based ap-
proach for robust speaker clustering using i-vectors. The i-
vectors extracted from different segments of same speaker are
correlated. We model this correlation with a Markov Random
Field (MRF) network. Leveraging the advancements in MRF
modeling, we used Toeplitz Inverse Covariance (TIC) matrix
to represent the MRF correlation network for each speaker.
This approaches captures the sequential structure of i-vectors
(or equivalent speaker turns) belonging to same speaker in an
audio stream. A variant of standard Expectation Maximiza-
tion (EM) algorithm is adopted for deriving closed-form solu-
tion using dynamic programming (DP) and the alternating di-
rection method of multiplier (ADMM). Our diarization system
has four steps: (1) ground-truth segmentation; (2) i-vector ex-
traction; (3) post-processing (mean subtraction, principal com-
ponent analysis, and length-normalization) ; and (4) proposed
speaker clustering. We employ cosine K-means and movMF
speaker clustering as baseline approaches. Our evaluation data
is derived from: (i) CRSS-PLTL corpus, and (ii) two meetings
subset of the AMI corpus. Relative reduction in diarization er-
ror rate (DER) for CRSS-PLTL corpus is 43.22% using the pro-
posed advancements as compared to baseline. For AMI meet-
ings IS1000a and IS1003b, relative DER reduction is 29.37%
and 9.21%, respectively.
Index Terms: Expectation maximization, i-Vector, Markov
random field, Peer-led team learning, Speaker clustering,
Toeplitz Inverse Covariance.

1. Introduction
Speaker diarization answers "who spoke and when?" in a multi-
speaker audio stream [1]. Some of the practical applications of
diarization technology include information retrieval [2], broad-
cast news, meeting conversations, telephone calls, VoIP, digi-
tal audio logging [3] and interaction analysis in Peer-Led Team
Learning (PLTL) groups [4, 5, 6, 7]. Diarization is a chal-
lenging task for naturalistic audio streams as they contain short
conversational turns, overlapped speech, noise and reverbera-
tion [8, 9]. Variable length speech segments and unsupervised
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clustering step are two main challenges from modeling perspec-
tive. NIST Rich Transcription (RT) evaluations involved broad-
cast news data and meeting recordings for diarization study [1].
Summed-channel telephone speech from NIST SRE evaluations
have been used in diarization studies [4].

Most diarization systems have following five components:
(i) speech activity detection (SAD) - to remove non-speech from
audio [10, 11]; (ii) speaker change detection/segmentation; (iii)
speaker modeling [12, 13]; (iv) speaker clustering; and (v) re-
segmentation - that re-aligns each speech frame using speaker
models obtained from the clustering module.

Speaker clustering is the most important component in di-
arization pipeline due to which, several speaker clustering ap-
proaches have been studied. These include, but not limited to,
bottom-up agglomerative hierarchical clustering (AHC) [14],
Cosine K-means [15], Cosine mean-shift [16], top-down ap-
proach [17], integer linear programming based method [18],
Viterbi-based models [19], PLDA i-vector scoring [20], mix-
tures of von Mises-Fisher Distributions [21] etc. Recent ad-
vancements in speaker clustering still remain inadequate for
naturalistic audio streams such as CRSS-PLTL corpus [6] as
those do not exploit sequential correlation in speaker turns be-
longing to same speaker. In this study, we explore the corre-
lation between different speech segments (i-vectors) belonging
to same speaker for diarization task. We formulate speaker
clustering as a structured inverse covariance estimation prob-
lem known as Toeplitz graphical lasso. Our work is motivated
by recent success of such approaches in unsupervised analy-
sis of physiological signals and real-world driving data [22].
We perform comparison of proposed Toeplitz Inverse Covari-
ance (TIC) speaker clustering with cosine K-means and movMF
baseline methods [21]. In this study, we employ i-vector fea-
tures for modeling the speakers. Naturalistic audio data from
CRSS-PLTL corpus is used in our experiments [23]. PLTL is a
STEM education model where a peer-leader facilitate problem-
solving among 6-8 students in weekly sessions [24]. We also
choose two meetings subset of AMI corpus for comparative
evaluations [25].

2. i-Vector Speaker Model
Diarization involve extracting i-Vectors from short speech-
segments (typically 1s) unlike speaker verification where com-
plete utterance is used. Numerous techniques exist for cluster-
ing i-Vectors using cosine distance [16]. The i-vector frame-
work combines the speaker and channel variability sub-spaces
of linear distortion model into a total-variability space repre-
sented by matrix Tmat [13, 26]. A speaker and channel de-
pendent Gaussian Mixture Model (GMM) supervector, S is de-
composed as

S = Subm + Tmat ·w (1)
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Figure 1: Block diagram of diarization pipeline employing proposed Toeplitz Inverse Covariance (TIC)-based speaker clustering. We
perform mean subtraction in all experiments. Length-normalization is required only for cosine K-means and movMF [21] baselines.

Algorithm 1 Assign-Clusters

Input: GIVEN β ≥ 0, −LogL(i, j) = negative log-likelihood
for i-th feature vector when it is assigned to j-th speaker cluster.
K is the number of speakers. Time stamp of i-vectors (speaker
features) is from 1 to T .
Output: FinalPath i.e. cluster assignment for each i-vector.
METHOD:

1: Initialize
2: previous_cost = list of K zeros
3: current_cost = list of K zeros
4: previous_path = list of K empty lists
5: current_path = list of K empty lists
6:
7: for i = 1, . . . , T do
8: for j = 1, . . . , K do
9: min_index = index of minimum {previous_cost}

10: if previous_cost[min_index] + β > previous_cost[j]
then

11: current_cost[j] = previous_cost[j] −LogL(i, j)
12: current_path[j] = previous_path[j].append[j]

else
13: current_cost[j] = previous_cost[minIndex] + β

−LogL(i, j)
14: current_path[j]=previous_path[min_index].append[j]
15: previous_cost = current_cost
16: previous_path = current_path
17: final_min_index = index of minimum {current_cost }
18: FinalPath = current_path[final_min_index]
19: return FinalPath

where Subm is the Universal Background Model (UBM) su-
pervector [13]. In Eqn. 1, the latent variables, w are low-
rank factors known as i-vectors. The total-variability ma-
trix, Tmat is a low-rank projection matrix that maps high-
dimensional speaker supervector to a low-dimensional total-
variability space [13, 26]. Tmat is estimated using stan-
dard expectation maximization (EM) algorithm on background
speech data [27].

3. Proposed Speaker Clustering
Toeplitz Inverse Covariance (TIC)-based clustering was found
to be suitable for segmenting the real-world time-series data
such as fitness-tracker and driving data [22]. Such temporal
data has complicated structure where the underlying sequences
of few fixed states repeat in definitive patterns. Robust speaker
clustering task possess a similar property, i.e., a small set of
speakers (such as 10 for PLTL) repeat throughout the audio
stream taking different conversational turns. In this section, we

Algorithm 2 Proposed TIC-based Speaker Clustering

Input: GIVEN: (i) Algorithm 1 for assigning i-vectors to
speaker clusters; (ii) i-Vectors (features) for time 1 to T .
METHOD:

1: Initialize
2: Speaker cluster parameters, Θ
3: Diarization output, spk_labels = cluster assignment

set C
4: Repeat
5:
6: E-step: Assign feature vectors to speaker clusters us-

ing Algorithm 1 i.e., map i-vectors⇒ spk_labels (see sec-
tion 3.1.)

7:
8: M-step: Update speaker clusters (model) parameters

by solving the Toeplitz Graphical Lasso (see section 3.2.)
i.e., spk_labels⇒Θ

9:
10: Until Convergence
11: return (Θ, spk_labels)

describe the TIC based speaker clustering followed by discus-
sion of experimental results in next section.

In the proposed approach, each unique speaker is repre-
sented as a correlation network modeled using MRF. Such
MRF network capture the interrelationship between differ-
ent i-vectors (segment-level) belonging to corresponding (one)
speaker. Thus, each speaker is modeled by their correspond-
ing MRF. A variant of standard expectation maximization (EM)
algorithm is leveraged for estimating the MRF model for each
speaker. First of all, the speaker models are initialized. Next,
EM iterations run alternately between Expectation (E-step) and
Maximization (M-step). During the E-step, feature vectors are
assigned to speaker clusters. Next in the M-step, model parame-
ters are updated using dynamic programming (DP) and alternat-
ing direction method of multipliers (ADMM) [22]. This process
of E-step followed by M-step is repeated until convergence. Es-
sentially, the proposed TIC approach views the temporal order
of i-vectors as a sequence of states characterized by their MRF
correlation network. Unlike centroid-based approaches such as
cosine K-means, proposed approach models the inner structure
present in the i-vector feature space. This leads to enhanced
clustering performance. Each MRF models the time-invariant
partial correlation structure in all feature vectors belonging to
the corresponding speaker [22].

3.1. E-step: Assign feature vectors to clusters (Algorithm 1)
In this step, we fix the current value of cluster (model) param-
eter i.e. inverse covariance matrix, Θ and solve the following



combinatorial problem for obtaining the cluster assignment set,
C = {C1, C2, · · · , CK} given by:

minimize
K∑
i=1

∑
Xt∈Ci

N(Xt,Θi) + β1Xt−1 /∈Ci
(2)

The Eqn. 2 assign each of the T i-vectors to one of the K
speaker clusters by jointly maximizing both the log likelihood
and temporal smoothness. Temporal smoothness parameter β
ensures neighboring blocks are assigned to the same speaker.
Thus, β is a regularization parameter (switching penalty) that
controls the trade-off between two objectives. For large value
of β →∞, all speaker features are grouped together in a single
cluster.

Given the model parameters (i.e., inverse covariance matri-
ces) Θi’s for each of the K speaker clusters, we solve the op-
timization problem in Eqn. 2 that assigns the T i-vectors, X1,
X2,....., XT to K clusters in a way that maximizes the like-
lihood of data while minimizing the number of times cluster
assignment changes across time. Given K potential cluster as-
signments for each of the T data points, this combinatorial opti-
mization problem hasKT possible mappings of feature vectors
to speaker clusters. We assign each i-vector to a unique cluster
using the approach presented in the Algorithm 1. This method
is equivalent to finding the Viterbi path with minimum cost for
the feature sequence of length T .
3.2. M-step: Toeplitz Graphical Lasso (Algorithm 2)
Each speaker cluster is modeled as a Gaussian inverse covari-
ance matrix, Θi ∈ RnbXnb where nb is the feature dimension.
Since the inverse covariance matrix show the conditional inde-
pendence structure between the variables, Θi defines a Markov
Random Field (MRF) that encodes the structural representa-
tion present in all feature vectors of the i-th speaker cluster.
Sparse graphical representations prevent overfitting in addition
to fetching interpretable results [28]. In the M-step of EM al-
gorithm, our objective is to estimate the K inverse covariance
matrices, Θ = {Θ1,Θ2, · · · ,ΘK} using the cluster assign-
ment sets, C = {C1, C2, · · · , CK}, where Ci ⊂ {1, 2, ..., T}
obtained from the previous E-step. We can estimate each Θi in
parallel thus saving execution time. The negative log likelihood
of feature vector, Xt to be assigned for i-th cluster with model
parameter Θi is denoted asN(Xt,Θi). We can write it in terms
of each Θi as follows [22]:∑

Xt∈Ci

N(Xt,Θi) = −|Ci|(log det(Θi) + tr(SiΘi)) +γ (3)

where |Ci| is the number of feature vectors assigned to the i-th
cluster, Si is the empirical covariance of these feature vectors,
and γ is a constant independent of Θi. Now, the M-step of EM
algorithm becomes

minimize− log det(Θi) + tr(SiΘi) +
1

|Ci|
||λ ◦Θi||1

subject to Θi ∈ T (4)

where T is a set of blockwise Toeplitz matrix. Eqn. 4 repre-
sents a convex optimization problem known as Toeplitz graph-
ical lasso [22]. It is a type of graphical lasso problem with ad-
ditional constraint of block Toeplitz structure on the inverse co-
variance matrices. Here, λ is a regularization parameter matrix
for handling the trade-off between two objectives: (i) maximiz-
ing the log likelihood, and (ii) ensuring Θi to be sparse. For in-
vertible matrix Si, likelihood objective lead Θi to be near S−1

i .

Figure 2: PLTL results: DER (%) for proposed and base-
line methods. No PCA, 21-PCA and 51-PCA represent cases
where no dimensional reduction is performed, where 21 princi-
pal components and 51 principal components are chosen after
PCA, respectively. Proposed approach achieves significant re-
duction in DER as compared to both baselines.

Figure 3: AMI results: DER (%) for two meetings namely
IS1000a and IS1003b. No PCA and 51-PCA represent cases
where no dimension reduction is performed, and 51 princi-
pal components are chosen after PCA, respectively. Proposed
speaker clustering gives less than 1% DER for both IS1000a
and IS1003b (best case).

The inverse covariance matrix, Θi is constrained to be block
Toeplitz and λ is a nbXnb matrix so that it can regularize each
sub-block of Θi differently. A separate Toeplitz graphical lasso
is solved for each speaker cluster at every iteration of the EM
algorithm. Since we require several iterations of the EM algo-
rithm before speaker clustering converges, a fast and efficient
approach based on alternating direction method of multipliers
(ADMM) is employed for this purpose [22]. For more details
on solving this Toeplitz graphical lasso, please refer to Section
4.2 in [22].

4. Experiments, Results & Discussions

In this study, we focus on speaker clustering and hence ground-
truth segmentation information is adopted for all experiments
to avoid errors from SAD and speaker segmentation steps (see
Fig. 1). We conduct evaluations on: (i) CRSS-PLTL, and (ii)
two meetings subset of AMI corpus, as detailed below.



4.1. CRSS-PLTL Eval Set
It contain audio recordings of 80 minute PLTL sessions that
are held once per week. PLTL is a student-led STEM edu-
cation paradigm popular in US universities for undergraduate
courses. Each session has 6-8 students plus a peer-leader who
direct the discussions for collaborative problem solving among
students [29]. CRSS-PLTL corpus [6] is a collection of audio
recordings from five groups studying an undergraduate chem-
istry course over 11 weeks. Each participant in PLTL sessions
wear a LENA device that collects the naturalistic audio [30].
We choose the channel corresponding to peer-leader for single-
stream diarization studies reported in this paper. Our evaluation
data consists of 80 minute audio with 8 speakers. We remove
the overlapped speech, laughter, cough etc. from audio signal
before passing it through our diarization system. Majority of
the conversational turns are short (1-1.5s) for this data. Human
annotators labeled the ground-truth speaker identity with start
and end time stamps.

4.2. AMI Meeting Eval Set

Augmented Multi-party Interaction (AMI) corpus contain audio
and video data recorded from meetings. Our AMI evaluation set
consists of headset audio of two meetings namely IS1000a
(26 min.) and IS1003b (27 min.) from the popular 12-
meetings subset of AMI corpus [25, 31]. Both meetings involve
four speakers discussing the design of a new remote control de-
vice.

4.3. Evaluations & Baseline Systems

Fig. 1 illustrate our diarization pipeline. We use frame-level 20-
MFCC features extracted from 40ms windows with 10ms skip-
rate. A UBM with 512 components is trained for i-vector ex-
traction [13]. Given the short conversational-turns in PLTL, we
train an i-vector extractor of dimension 75. For all experiments
in this paper, we perform mean subtraction on i-vectors where
the mean is computed from entire PLTL session/AMI meeting
(see Fig. 1). Mean subtraction is followed by principal com-
ponent analysis (PCA) for de-correlation and dimension reduc-
tion. We do PCA based dimension reduction to compare the
performance over 21 and 51 components.

We recently proposed Mixtures of von Mises-Fisher Distri-
butions (movMF) based speaker clustering for naturalistic au-
dio data [21]. In this study, we choose cosine K-means [32]
and movMF speaker clustering [21] as our baseline approaches.
Unlike conventional K-means, cosine K-means projects the es-
timated cluster centroids onto unit hypersphere at the end of
each M-step in the EM algorithm. Cosine K-means is a spe-
cial case of movMF speaker clustering as discussed in [21].
When all mixture weights are equal and all concentration pa-
rameters are equal, the movMF speaker clustering becomes
equivalent to cosine K-means. Feature vectors undergo length-
normalization [33] before passing through cosine K-means [32]
and movMF [21] baselines as these methods expect data ly-
ing on the unit hypersphere. On the other hand, length-
normalization is optional for proposed TIC speaker clustering.
We input either the mean-subtracted i-vectors or PCA processed
i-vectors to the proposed TIC speaker clustering.

4.4. Results & Discussions

Diarization error rate (DER) is used for comparing the per-
formance of different clustering approaches in this paper [34].

Mathematically, it is defined as:

DER =
αfa + αmiss + αerr

αtotal
(5)

where αtotal is the total scored time from reference annotations,
αfa is scored time for which a non-speech region is incorrectly
marked as containing speech, αmiss is scored time for which
a speech region is incorrectly marked as not containing speech,
and αerr is the scored time for which a wrong speaker identity
is assigned within a speech region. In this study, we focus on
speaker clustering and hence ground-truth segmentation infor-
mation was adopted in all experiments. Thus, αfa and αmiss

are zero. Here, DER is only dependent on speaker confusion er-
ror, αerr . Overlapped speech, laughter and other miscellaneous
vocalizations such as cough is removed from the audio signal
before feeding into our diarization pipeline (see Fig. 1).

The proposed speaker clustering approach requiresO(KT )
time for grouping T i-vectors into K clusters. Hence, it is a
scalable approach. Fig. 2 shows the DER comparison between
proposed and baseline methods with various post-processing
for PLTL data. Clearly, DER is reduced to almost half for
proposed approach as compared to cosine K-means. The pro-
posed method learns a correlation network modeled as MRF
and hence it expects correlated data as input. After PCA, fea-
ture vectors are de-correlated and estimating the underlying cor-
relation model using MRF is not accurate in this case. Con-
sequently, as expected PCA degrades the performance of pro-
posed approach on naturalistic PLTL data. The movMF is state-
of-the-art for speaker clustering on PLTL data [21]. The pro-
posed approach lead to 23.18% relative reduction in DER as
compared to movMF speaker clustering. Significant DER re-
duction validate the efficacy of proposed Toeplitz Inverse Co-
variance (TIC)-based speaker clustering for naturalistic audio
such as CRSS-PLTL.

Fig. 3 illustrate the DER comparison between proposed ap-
proach and baselines for two meetings subset of AMI corpus.
Clearly, the best DER for both meetings are obtained by pro-
posed approach. For both meetings, proposed approach fetch
less than 1% DER showing its efficacy for real-world meeting
data. For AMI meetings IS1000a and IS1003b, relative DER
reduction is 29.37% and 9.21%, respectively. CRSS-PLTL data
has higher levels and more varied forms of distortions as com-
pared to AMI meeting data. Also, there are 8 speakers in PLTL
data as compared to 4 in AMI meetings. These differences
cause the DER to be in different ball park for both corpora.

5. Summary & Conclusions
In this paper, we leveraged the Toeplitz Inverse Covariance
(TIC) estimation in speaker clustering task for naturalistic au-
dio such as CRSS-PLTL corpus. Such audio data are rich
in noise, overlapped-speech and reverberation in addition to
short conversational turns (1s). The proposed approach accu-
rately models the inner structure in i-vector features belonging
to same speaker. It leads to enhanced clustering that eventu-
ally improves diarization performance. Each speaker cluster is
characterized by a Markov Random Field (MRF) that captures
its correlation structure. For robust speaker clustering task,
the proposed approach iterates with alternating two steps of
the standard Expectation Maximization (EM) algorithm: (i) E-
step that assigns each speaker feature to a unique cluster; and
(ii) M-step that update the model parameters using speaker
clusters obtained in the E-step. We performed experiments on
(i) CRSS-PLTL; and (iii) AMI meeting data. Cosine K-means



and movMF were chosen as baseline clustering methods. Pro-
posed TIC based speaker clustering fetch 43.22% relative re-
duction in DER for CRSS-PLTL data. AMI evaluation set has
29.37% (IS1000a) and 9.21% (IS1003b) relative reduction in
DER over baseline. Significant improvements in DER show
the efficacy of proposed speaker clustering for naturalistic au-
dio streams.
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