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Abstract 

In this paper, we propose a quasi-periodic neural network (QPNet) 

vocoder with a novel network architecture named pitch-

dependent dilated convolution (PDCNN) to improve the pitch 

controllability of WaveNet (WN) vocoder. The effectiveness of 

the WN vocoder to generate high-fidelity speech samples from 

given acoustic features has been proved recently. However, 

because of the fixed dilated convolution and generic network 

architecture, the WN vocoder hardly generates speech with given 

F0 values which are outside the range observed in training data. 

Consequently, the WN vocoder lacks the pitch controllability 

which is one of the essential capabilities of conventional vocoders. 

To address this limitation, we propose the PDCNN component 

which has the time-variant adaptive dilation size related to the 

given F0 values and a cascade network structure of the QPNet 

vocoder to generate quasi-periodic signals such as speech. Both 

objective and subjective tests are conducted, and the experimental 

results demonstrate the better pitch controllability of the QPNet 

vocoder compared to the same and double-size WN vocoders 

while attaining comparable speech qualities.  

Index Terms: WaveNet, vocoder, quasi-periodic signal, pitch-

dependent dilated convolution, pitch controllability 

1. Introduction 

For conventional parametric speech synthesis, speech is usually 

decomposed into several acoustic features and synthesized with 

these acoustic features. The analysis-synthesis technique is 

called a vocoder [1], and the foundation of a vocoder is a speech 

production mechanism based on source excitation and vocal 

tract. The main advantage of a vocoder is that it provides high 

flexibility for users to manipulate the synthesized speech to 

meet their scenarios. However, because of the oversimplified 

assumptions from conventional vocoders such as STRAIGHT 

[2] and WORLD [3], temporal details and phase information 

are lost, and it causes significant quality degradation. 

Recently, neural network (NN) based speech synthesis [4–

11] has become one of the most popular techniques, which is 

widely applied to many devices in daily life such as speech 

assistants and car navigators. However, human perception is 

quite sensitive to speech quality, and that of synthesized speech 

highly depends on the generation model. WaveNet (WN) [4] is 

one of the state-of-the-art speech generation models, which has 

been applied to many applications, such as speech enhancement 

[12, 13], text-to-speech (TTS) [7, 9], speech coding [11], and 

voice conversion (VC) [15–18]. Specifically, WN is an 

autoregressive model that predicts a current speech sample 

based on a specific number of previous samples which is called 

the receptive field. Because of the long-term dependence of 

speech signals, WN applies a stacked dilated convolution 

network (DCNN) structure to efficiently extend the receptive 

field. Furthermore, non-autoregressive generation models [19, 

20] also have been proposed to reduce the generation time while 

maintaining the comparable speech qualities to WN. For NN-

based vocoders, the WaveNet vocoder [21–23], which is a 

WaveNet conditioned on the acoustic features extracted by a 

traditional vocoder to generate speech, achieves significant 

improvements in speech naturalness than traditional vocoders. 

However, it is difficult for the WN vocoder to deal with 

unseen conditional features. That is, the WN vocoder cannot 

generate relevant speech from the given fundamental frequency 

(F0) that outside the range observed in training data, whereas 

the pitch controllability is an essential mechanism of traditional 

vocoders. This difficulty may be caused by the fixed network 

architectures. Specifically, the fixed receptive field indicates 

that each speech sample correlates to the same numbers of past 

samples, but it is more reasonable that each sample has its own 

dependent field. Furthermore, to generate high-fidelity speech, 

the required long receptive field results in a huge network size. 

To tackle these problems, we propose a quasi-periodic NN-

based (QPNet) vocoder with a novel pitch-dependent dilated 

convolution network (PDCNN), which is inspired by source-

filtering model [24] and code-excited linear prediction (CELP) 

codec [25], to model the relationships of speech samples in a 

pitch cycle with the short-term correlation and then extend that 

to whole quasi-periodic signals with the long-term correlation. 

Specifically, QPNet includes two cascaded WNs with different 

dilated convolution structures. The first part is the original WN 

using the fixed DCNNs to presumably generate signals based 

on a specific segment of previous samples. The second part 

including PDCNNs makes the network generate signals based 

on the relevant segments of previous cycles. The adaptive 

dilated structure deals with the unseen F0 with the introduced 

quasi-periodic information and gives each sample an exclusive 

receptive field corresponding to the conditional F0. Moreover, 

because the proposed QPNet vocoder extneded the receptive 

field more efficiently than the original WN vocoder, half the 

network size was required to achieve acceptable performance 

according to the experimental results. 

2. WaveNet vocoder 

The WN vocoder models the long-term dependence among 

sequential waveform samples and auxiliary acoustic features 

using a conditional probability as follows: 
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where t is the sample index, r is the length of the receptive field, 

yt is the current audio sample, and h  is the auxiliary feature 

vector. That is, the WN vocoder predicts the conditional 

distribution of the current speech sample with input auxiliary 

features and a specific number of previous samples, which is 

called the receptive field. Furthermore, the WN vocoder usually 

transforms the speech generation into a classification problem. 

By encoding speech signals into 8 bits using the µ-law, the 

output of theWN vocoder becomes a categorical distribution. In 

addition, a gated structure is applied to enhance the modeling 

capability which is formulated as 
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where 
 1

V  and 
 2

V  are trainable convolution filters,   is 

the convolution operator,   is an elementwise multiplication 

operator,   is a sigmoid function, k is the layer index, f and g 

represent the filter and gate, respectively, and  u   is an 

upsampling layer used to adjust the resolution of auxiliary 

features to match that of input speech samples. Moreover, 

because of the very long term dependence and causality of 

speech signals, WaveNet applies a DCNN structure [4, 26] to 

guarantee the causality and efficiently extend the receptive 

field. To sum up, previous speech samples pass through a 

pipeline including a causal layer and several residual blocks 

which contain a dilated convolution layer, gated activation with 

auxiliary features, and residual and skip connections. Then, the 

summation of all skip connections is passes to two 1×1 

convolution and one softmax layers to output the predicted 

distribution of the current sample. 

However, because of the data-driven nature without the 

speech related prior knowledge, the WN vocoder lacks the pitch 

controllability. For example, the traditional vocoders based on 

source-filtering model easily generate speech with precise 

pitches matched to arbitrarily input F0 values, but the WN 

vocoder often has the difficulty in generating speech or tends to 

generate speech within the F0 range observed in training data 

when conditioned on the unseen F0 values.  

3. Quasi-Periodic WaveNet vocoder 

The cascaded structure of the autoregressive networks and the 

pitch-dependent mechanism of the dilated convolution neural 

networks of QPNet are inspired by the short/long-term 

prediction architectures and the pitch filtering technique of 

CELP. The details are as follows. 

3.1. Pitch filtering in CELP 

For CELP, a given excitation sequence from a codebook is 

filtered by a linear-prediction and pitch filters to reconstruct 

speech. The linear-prediction filter restores the spectral (short-

term correlation) information. The pitch (long-delay) filter 

generates the pitch periodicity of the voiced speech follows 

     o i o dc t G c t b c t t     ,                      (3) 

where  ic t  is the input,  oc t is the output, G is the gain, b is 

the pitch filter coefficient and td is the pitch delay. 

3.2. Pitch-dependent dilated convolution 

Figure 1 elaborates the concept of PDCNN. If the input is a 

sequential quasi-periodic signal with time-variant F0, the 

receptive field lengths of the original structure (fixed dilated 

convolution) are time-invariant but that of the pitch-dependent 

one are changed corresponding to the F0 values. Specifically, 

the dilated convolution is formulated as 
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where 
 i

X  and 
 o

X  are the input and output of the DCNN 

layer. 
 c

W  and 
 p

W  are the trainable 1×1 convolution filters 

of current and past samples, respectively. The dilation size d is 

a constant for DCNN but time-variant for PDCNN. Specifically, 

the pitch-dependent d makes the receptive field of each sample 

with arbitrary pitch contain a specific number of previous 

cycles. That is, the network predicts each current sample given 

the same number of previous cycles, while each current sample 

has the different pitch. Therefore, the pitch-dependent structure 

makes the network efficiently extend the receptive field without 

losing trajectory information of the sequential signals. 

In addition, for original stacked DCNN, the dilation size is 

doubled for every layer up to a specific number and then 

repeated. Proposed PDCNN also follows the same rule to layer-

wise extend the dilation sizes but with an extra dilated factor Et 

to adjust the dilation sizes to match the pitch of the current 

sample. The pitch-dependent dilated factor Et is as follows: 

   0,t s tE F F a  ,                                (5) 

where Fs is the sampling rate which is a constant of the whole 

utterance, F0,t is the fundamental frequency of speech sample 
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Figure 1: Pitch-dependent dilated convolution 
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Figure 2: Quasi-Periodic WaveNet vocoder architecture 



with sample index t, and a is a hyperparameter. Therefore, each 

speech sample has a pitch-matched length of the receptive field. 

Furthermore, a indicates the number of samples in one cycle for 

considering, and we empirically set it to 8 in this paper. We also 

applied the interpolated continuous F0 rather than the discrete 

ones to get the pitch-dependent dilated factors because of the 

better performance based on our internal experiments. 

3.3. Cascaded autoregressive networks 

Figure 2 shows the architecture of the proposed QPNet vocoder 

that consists of two main modules. The first module is like the 

original WN vocoder to have a causal layer and several stacked 

residual blocks including a dilated convolution, conditional 

auxiliary features, gated activations, and residual and skip 

connections. The second module also has several stacked 

adaptive residual blocks similarly to the first module but 

alternatively adopting the pitch-dependent dilated convolutions. 

Furthermore, motivated by CELP, we cascade the two modules 

to respectively model the short and long-term dependences of 

speech signals. Specifically, based on the assumption that 

speech can be decomposed into periodic and nonperiodic 

components, we assume that the nonperiodic parts mostly 

depend on the nearest samples, while the periodic parts have 

very long term dependences. Therefore, the first module of 

QPNet is used to estimate the short-term information, and the 

second module models the long-term periodical correlations. 

4. Experiments 

4.1. Experimental settings 

We conducted objective and subjective tests to evaluate the 

performance of four vocoders including the WORLD [3] 

vocoder, the WN vocoders with two different network sizes, 

and the proposed QPNet vocoder. Specifically, we trained a 

compact-size QPNet vocoder to compare with a compact-size 

WaveNet (WNc), full-size WaveNet (WNf), and WORLD 

vocoders. The hyperparameters of the networks are sown in 

Table 1. The training followed our previous work [16]. 

  The training corpus of the multispeaker WNf, WNc, and 

QPNet vocoders included the training data of the ‘bdl’ and ‘slt’ 

speakers of CMU-ARCTIC [27] and all training data of 

VCC2018 [28] consistented with [16]. The four source speakers 

(two males and two females) of the SPOKE set of VCC2018 

were used as an evaluation set, and each speaker contained 35 

testing utterances. The original acoustic features were extracted 

by WORLD, which consisted of one-dimensional F0 and 513-

dimensional spectral (sp) and aperiodic (ap) features. F0 was 

converted into continuous F0 features and voice/unvoice (uv) 

binary symbols, sp was parameterized into 34-dimensional 

Mel-cepstrum coefficient (mcep), and ap were coded into two-

dimensional components [18]. Furthermore, we simulated 

outside unseen acoustic features by scaling F0 with ten different 

ratios from 1/2 to 2. The following evaluations were conducted 

on the basis of the transformed F0, original natural mcep, coded 

ap, WORLD vocoder, and multispeaker vocoders of WNc, 

WNf, and QPNet.   

4.2. Objective evaluations 

For the objective tests, we respectively measured the pitch 

accuracy and spectral distortion of the generated speech using 

the root-mean-square error (RMSE) of logarithmic F0 and Mel-

cepstral distortion (MCD). Specifically, to evaluate the pitch 

generation accuracy of each vocoder related to the conditional 

F0, we calculated the RMSE between the conditional F0 and the 

F0 extracted from the generated speech. Moreover, we 

computed MCD between the conditional and extracted mcep to 

evaluate the robustness of the spectrum reconstruction, while 

conditioned on the unseen acoustic features. 

Table 2 shows the results of RMSE of log F0, and we can 

find that the proposed QPNet vocoder significantly 

outperformed the same-size WNc vocoder. Even compared to 

the double-size WNf vocoder, the QPNet vocoder still achieved 

better pitch generation accuracy, especially conditioned on the 

scaled F0 with large offset. Although the conventional WORLD 

vocoder reasonably achieved the lowest RMSE, the proposed 

QPNet vocoder still remarkably improved the accuracy of pitch 

generation with unseen conditional F0 compared to the original 

WN vocoders. In addition, Table 3 indicates that the proposed 

QPNet vocoder still had much better spectrum prediction 

capability than the same size WNc vocoder. However, the 

QPNet vocoder got worse performance than the WNf vocoder. 

Figure 4: XAB evaluation of pitch accuracy with 95% 

confidence interval. 
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Table 1: Comparison of hyperparameters  

Hyperparameters WNf WNc QPNet 

Number of fixed layers 10 4 4 

Number of fixed repeats 3 4 3 

Number of adaptive layers - - 4 

Number of adaptive repeats - - 1 

Constant a  - - 8 

Causal and dilated conv. 512 channels 

1×1 conv. in residual blocks 512 channels 

1×1 conv. between skip-

connection and softmax 

256 channels 

Table 2: Comparison of root-mean-square error of log F0 

with different vocoders and F0 transformed ratios 

F0 ratio WORLD WNf WNc QPNet 

Unchanged 0.09 0.14 0.26 0.13 

1/2 0.13 0.30 0.38 0.23 

2/3 0.11 0.23 0.35 0.19 

3/4 0.10 0.20 0.32 0.17 

4/5 0.10 0.18 0.30 0.16 

6/5 0.09 0.16 0.26 0.13 

5/4 0.09 0.17 0.26 0.14 

4/3 0.10 0.18 0.26 0.15 

3/2 0.09 0.21 0.27 0.16 

2 0.09 0.26 0.28 0.18 

Average 0.10 0.20 0.29 0.16 

 

 

Table 3: Comparison of Mel-cepstral distortion with 

different vocoders and F0 transformed ratios 

F0 ratio WORLD WNf WNc QPNet 

Unchanged 2.52 3.58 4.34 4.08 

1/2 3.92 4.56 5.02 4.79 

2/3 3.19 4.15 4.71 4.47 

3/4 2.93 3.95 4.58 4.34 

4/5 2.79 3.84 4.50 4.27 

6/5 2.72 3.60 4.38 4.14 

5/4 2.76 3.62 4.39 4.16 

4/3 2.83 3.63 4.42 4.19 

3/2 3.05 3.68 4.50 4.27 

2 3.75 3.86 4.75 4.59 

Average 3.04 3.84 4.56 4.33 

 



The much shorter receptive field length caused by the halved 

network size might degrade the spectral prediction capability of 

QPNet. In summary, the objective evaluations confirm that the 

proposed pitch-dependent dilation structure can improve the 

pitch generation accuracy for NN-based vocoders.  

4.3. Subjective evaluations 

For the perceptual evaluations, we conducted the mean opinion 

score (MOS) and XAB preference tests to evaluate the sound 

quality and pitch accuracy of the generated utterances from 

different vocoders conditioned on the acoustic features with 

different scaled F0. Specifically, we randomly selected 20 

utterances from 35 testing utterances of each speaker and scaled 

F0 to form an evaluation set. Then, we divided the set into five 

subsets and each one was evaluated by two subjects. The total 

number of subjects was 10, and the demo can be found at 

“https://bigpon.github.io/QuasiPeriodicWaveNet_demo/”. 

For the MOS test, the subjects evaluated the 960 utterances 

which were generated using the WORLD, WNf, WNc, and 

QPNet vocoders given the acoustic features with unchanged, 

1/2, and 3/2 F0. The measurements were 1~5 and the higher 

score meant the better sound quality. For the XAB test, each 

subject first listened to one reference and two testing utterances 

and then selected the testing utterance that had more consistent 

pitches with the reference one. Moreover, because we did not 

have the real speech with scaled F0, and the conventional 

vocoders could generate speech with more precise pitches in the 

unseen F0 scenarios, we took the WORLD generated utterances 

as the reference speech. That is, the subjects evaluated the pitch 

accuracy of the WNf and QPNet generated utterances based on 

the WORLD generated reference utterances. 

As shown in Fig. 3, in the inside F0 range (unchanged F0) 

case, although WORLD achieved better MCD, WNf still got 

much better MOS. The oversimplified excitation model of 

WORLD caused serious buzz noise, and WNf generated speech 

without many handcraft assumptions and achieved better 

perceptual quality. However, this result also indicates that the 

performance of the WN vocoder highly depends on the length 

of receptive field, so the quality of the WNc generated speech 

significantly degraded. As a result, after applying PDCNN, 

which can efficiently extend the receptive field, the QPNet 

vocoder achieved comparable sound qualities to the WNf 

vocoder. Moreover, Fig. 4 suggests that QPNet achieved 

comparable pitch generation accuracy with WNf, which is 

consistent with the objective results. In addition, in the outside 

1/2 F0 cases, WORLD suffered severe naturalness degradation 

especially in very low F0 (male speakers) cases which made 

WORLD generate robotic speech. However, conditioned on 1/2 

F0, QPNet and WNf still generated speech with acceptable 

quality as shown in Fig. 3, and QPNet got remarkablely higher 

pitch generation accuracy as shown in Fig. 4. In the outside 3/2 

F0 cases, WORLD showed the robustness against arbitrary F0 

inputs. Although QPNet still attained higher pitch accuracy, the 

sound quality of QPNet became worse than that of WNf.  

4.4. Discussion 

We selected a compact network size which was only half of the 

original WN vocoder, so only about 75 % training and 40% 

generation times were required. However, it made the receptive 

field length become much shorter. For example, the length of 

the receptive field of WNf was 3070 (The receptive field length 

of 10 layers in each repeat was 2021 … 291023, so the total 

length was 10233 with extra one from causal layer), but that 

of WNc was only 61 (2021222315 in each repeat, and the 

total receptive field length was 154161). Furthermore, the 

effective receptive field length of QPNet was 4615*Et (The 

receptive field length of fixed and causal layers was 153146, 

and that of the adaptive layers was the product of 15 and the 

pitch-dependent dilated factors), so the size was around 886 to 

136 for the F0 range of training corpus was around 50 to 500 Hz 

with sampling rate of 22.05 kHz (the pitch-dependent dilated 

factor of 50 Hz was 56 that was the ceiling of 22050508), 

which were quite shorter than that of WNf. It is the possible 

reason that QPNet achieved worse speech quality while the 

auxiliary F0 with high scaled ratio.   

5. Conclusions 

In this paper, we proposed a QPNet vocoder with the new pitch- 

dependent dilated convolution which extends the receptive field 

more efficiently than the WN vocoder. Moreover, the QPNet 

vocoder also has higher pitch generation accuracy, which takes 

advantage of the proposed PDCNN, and comparable sound 

quality to the double-size WN vocoder. In conclusion, the 

QPNet vocoder is more in line with the definition of vocoder. 

In future works, we will survey the effectiveness of QPNet in 

the voice conversion task. 
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Figure 3: MOS evaluation of sound quality with 95% 

confidence intervals. 
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Figure 4: XAB evaluation of pitch accuracy with 95% 

confidence intervals. 
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