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Abstract
This paper1 focuses on using voice conversion (VC) to improve
the speech intelligibility of surgical patients who have had parts of
their articulators removed. Due to the difficulty of data collection,
VC without parallel data is highly desired. Although techniques
for unparallel VC—for example, CycleGAN—have been devel-
oped, they usually focus on transforming the speaker identity, and
directly transforming the speech of one speaker to that of another
speaker and as such do not address the task here. In this paper,
we propose a new approach for unparallel VC. The proposed ap-
proach transforms impaired speech to normal speech while pre-
serving the linguistic content and speaker characteristics. To our
knowledge, this is the first end-to-end GAN-based unsupervised
VC model applied to impaired speech. The experimental results
show that the proposed approach outperforms CycleGAN.
Index Terms: Unpaired Voice Transformation, Generative Ad-
versarial Networks

1. Introduction
Voice conversion (VC) is a task aimed at converting the speech
signals from a certain acoustic domain to another while keeping
the linguistic content the same. Examples of acoustic domains in-
clude not only speaker identity [1, 2, 3, 4], but many other factors
orthogonal to the linguistic content, such as speaking style, speak-
ing rate [5], noise condition, emotion [6, 7], and accent [8], with
potential applications ranging from speech enhancement [9, 10],
computer-assisted pronunciation training for non-native language
learner [8], speaking assistance [11], to name a few.

This paper focuses on using VC to improve the speech intel-
ligibility of surgical patients who have had parts of their articula-
tors removed. Because of the removal of parts of the articulator, a
patient’s speech may become distorted and difcult to understand.
VC methods can be applied to convert the distorted speech such
that it is clear and more intelligible. In this work, we consider a
VC model without ASR [12] because collecting a large amount
of data to train an ASR for impaired speech is laborious and not
practical.

Non-negative matrix factorization (NMF) based VC has been
used for this task [13, 14, 15]. In previous work, paired utter-
ances from both patients and unimpaired people were needed for
training. Collecting a large amount of audio from patients is dif-
ficult under this task because even speaking for a long time is
usually difficult for them, not to mention the collection of paired
data. Due to the lack of training data, to our best knowledge, deep
learning has not been widely applied on this task yet.

After the success of deep learning in various domains, many
researchers have attempted to incorporate deep learning into the
VC framework, but most focus on speaker identity conversion.

1This work was supported in part by Ministry of Science and Technol-
ogy (MOST), R.O.C. and NVIDIA.

Most previous work requires aligned data, but due to the diffi-
culties in obtaining aligned data, approaches utilizing generative
models such as variational autoencoders (VAEs) [16, 17] and gen-
erative adversarial networks (GANs) [18, 19] were studied be-
cause they can be trained with non-parallel data. VC for artic-
ulation disorders without parallel data is highly desired due to
the difficulty of data collection. To achieve that, one can simply
apply the techniques developed for speaker identity VC by con-
sidering the patient with the articulation disorder as the source
speaker, and the unimpaired person as the target speaker. How-
ever, the model thus learned would simply convert the voice of the
source speaker into that of the target speakers without preserving
the source speaker’s individuality. Even worse, the speaker VC
model may change only speaker characteristics, but yield a con-
verted voice that is still unclear. Therefore, to achieve VC for
articulation disorders without parallel data, a new approach must
be developed.

The overview of the proposed approach is shown in Figure 1.
The proposed model includes a generator, a discriminator, and a
controller. The generator and discriminator form a GAN which
is learned from a large amount of normal speech which is eas-
ier to collect than impaired speech. The discriminator learns to
judge whether the input is real speech or if it has been generated
by the generator. The generator takes a code which represents
the content and speaker of the audio to be generated as input, and
generates normal speech to fool the discriminator. The impaired
speech is used only to train the controller. Given impaired speech
as input, the controller outputs a code which is taken as the input
of the generator, and the generator generates normal speech based
on the input code. The controller learns to generate code that
makes the generator output normal speech with the same linguis-
tic content and the same speaker characteristics as the impaired
speech, thus minimizing their high-level differences.

To guide the controller learning, we require automatic ways
to evaluate this high-level difference. Inspired by perception loss,
widely used in image processing [20], we use the hidden layers of
the discriminator to evaluate the similarity of two audio segments.
Compared with CycleGAN, which maps from the source speaker
to the target speaker also in an unsupervised way, the proposed
approach better improves speech intelligibility while preserving
speaker characteristics.

2. Proposed Approaches
The proposed approach consists of three models: a generatorG, a
discriminator D, and a controller C. For training data, we have a
large amount of speech from unimpaired subjects: T = {xti}Ni=1,
where xti is a fixed-length acoustic feature sequence from the ut-
terances of unimpaired subjects, and N is the number of audio
segments in the training set. We also have the speech of a patient,
S = {xsi}N

′
i=1, where N ′ is the number of audio segments for the

patient, but the data size is much smaller than that of unimpaired
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subjects (N ′ � N ).
The content of normal speech and impaired speech are com-

pletely unrelated. During testing, given an utterance of the pa-
tient, it is first equally segmented into a sequence of audio seg-
ments. The controller takes the audio segments as input, and the
generator transforms them into normal speech.

Figure 1: Overview of proposed approach. The difference is eval-
uated by a network instead of using low-level signal differences.
The controller learns to minimize the high-level difference.

2.1. Generator-Discriminator

We use the audio of unimpaired subjects T to train the audio gen-
erator G and discriminator D. The generator is used to generate
audio x̃ given a vector c, that is, x̃ = G(c), and the discriminator
D attempts to distinguish xt ∼ T from x̃ ∼ G while the genera-
tor tries to fool it. As shown below, the objective functions for D
and G follow the idea of LSGAN [21]:

LD = Ext∼T [(D(xt)− 1)2] (1)

+ Ec∼Pc(c),x̃∼G(c)[(D(x̃))2]

LG = Ec∼Pc(c),x̃∼G(c)[(D(x̃)− 1)2] (2)

In (1), D learns to assign normal speech xt a score of one,
and assign a score of zero to generated audio segments x̃. At the
same time, in (2), G learns to generate an x̃ that yields a score
of one from D. Here c is the output of the controller C, which
we assume has a distribution Pc(c) in (1) and (2)2. After the
above training procedure, we have a generator G which generates
normal speech given a condition vector c. The vector c controls
the generated audio of G. By choosing the condition vector c
properly, we generate audio segments with the desired content
and speaker characteristic. The core idea is that a large amount
of normal speech can be used to train a generator G which can
generate high quality speech, and the impaired speech is only used
to select c, which is a much easier task than speech generation.

2.2. Controller

Given the audio segment xs from a patient, we want to find its cor-
responding counterpart xt in the domain of normal speech. The
basic idea is to properly choose the condition c that causes G to
generate speech xt similar to xs. If xt is close to xs, they may
contain the same linguistic information with the same speaker
characteristics, but the xt generated by G sounds like normal
speech (which is what we want) because G has learned to gen-
erate normal speech.

The controller C takes an audio segment xs as input, and
outputs its corresponding condition c as the input of G. Here
we assume only a small amount of audio S from the patient is

2To be specific, c ∼ Pc(c) is equivalent to c ∼ C(xs), xs ∼ S. This
is made clear below.

available as training data. S is used only to train controller C. C
is learned by minimizing the following loss:

LC = Exs∼S [L(G(C(xs)), xs)] (3)

The metric L(., .) is used to evaluate the difference between two
audio segments. In (3), C learns to make the input xs and the cor-
responding output of the generatorG(C(xs)) as close as possible.
L(., .) is defined in the next subsection. If we jointly optimize G
and C, minimizing (3) is equivalent to training an auto-encoder
(the controller is an encoder, while the generator is a decoder).
However, we only update C when we minimize (3). This is very
critical for the success of this approach, because if G is also up-
dated to minimize (3), we cannot guarantee that G still generates
normal speech after the update.

2.3. Distance Measure for Audio

For distance L(., .), both L1 and L2 loss are not suitable because
we seek to evaluate the similarity of the content and the speaker
characteristics between two audio segments, not merely low-level
signal similarity. On image style transfer tasks, the perceptual loss
[20], which utilizes the layers of a CNN classifier as features and
applies a distance measure to these, has been shown to produce
finer results than pixel-wise loss. Here we borrow this idea to
evaluate high-level audio similarity. Instead of training another
classifier, we use the discriminator as the objective classifier for
the distance measure.

For the perceptual loss, we choose the Laplacian pyramid
Lap1 loss [22]. We use the notation Dl(x) to denote the output of
the l-th layer of the discriminator D given input x. Then L(., .)
in (3) is formulated as

L(x, x′) =
∑
l

2−2l|Dl(x)−Dl(x
′)|1 (4)

The L1 distance of the hidden layer outputDl(x) is computed. In
(4), all the hidden layers of D are considered to capture informa-
tion at different granularities. The weights for each layer follows
[22].

3. Implementation
3.1. Acoustic Feature Processing

We use the mel spectrogram as the input of the controller and the
output of the generator. Before transforming into the spectrogram,
we trim audio silence and perform volume normalization. All
audio is converted to a 16kHz sample rate. After that, we use a 50
milliseconds window length, a 12.5 milliseconds hop length, and
a 1024 FFT window size for the STFT.

After constructing the spectrogram, we construct the mel
spectrogram using 128 mel frequency bands with a frequency
range from 55Hz to 7600Hz. Then we turn the mel spectrogram
into the decibel scale and standardize the features across the time
dimension to zero mean and unit variance. We clip the values be-
tween−c and c. Although the hyperparameter c is somewhat data
dependent, we find that c = 3 works well in most cases. Using
these settings, most of the human speech mel spectrograms can
be transformed back to the raw waveforms with little audible dis-
tortion. Since the feature values are constrained to [−c, c], we use
c · tanh(·) as the output activation for our generator.

To convert the mel spectrogram back to the raw waveform,
we first rescale the model output and then multiply the psuedo
inverse of the mel filter bank to recover the linear spectrogram.
Finally, using Griffin and Lim’s algorithm to estimate the phase,
we reconstruct the raw waveform.
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Figure 2: Controller-generator-discriminator configuration

3.2. Model Configuration

The network structure of the discriminator, generator, and con-
troller is shown in Figure 2. So that the discriminator better cap-
tures dynamics, we augment the input spectrogram with the first
and second order deltas in both time and frequency dimensions.
The time-frequency bin of the original spectrum is represented by
a scalar; after augmentation, each bin is a 5-dimensional vector.
To make gradient propagation more efficient, we augment each
hidden layer of the discriminator with its input. However, since
the discriminator uses strided convolutions, the spacial dimension
of the input and hidden layers will be inconsistent. To overcomes
this, we apply max pooling on the input to make the spacial di-
mension consistent with hidden layers, then augment them as ad-
ditional channels to the hidden layers.

The pool size and stride are determined by the shape of the
corresponding discriminator layer. Before c is fed into the gener-
ator, we project c onto the L2 unit ball as:

c← c

max(‖c‖2, 1)
(5)

In the real-world implementation, LD , LG, and LC are updated
once in each training iteration.

3.3. Training Details

We trained the proposed model using the Adam optimizer with
a 0.0002 learning rate, and β1 = 0.5 and β2 = 0.9 for the
controller and generator. A learning rate of 0.0001 was applied
to the discriminator to avoid fast convergence. Instance normal-
ization [23] and spectral normalization [24] were applied to both
the generator and discriminator to stabilize training. ELU acti-
vation [25] was used for the generator and controller, and RELU
activation was used for the discriminator. We used a batch size of
64, a dropout rate of 0.9 for the controller, and 0.8 for the discrim-
inator. Further details may be found in our implementation code:
https://github.com/b04901014/ISGAN.

4. Experiments
4.1. Experimental Setup

The normal utterances for training the generator and discrimina-
tor came from the ASTMIC dataset, which contains 100 male
speakers with different speaking rates, each reading out 200 dif-
ferent Mandarin sentences. The impaired speech, from an orally-
impaired male speaker, included 132 utterances in Mandarin. As

this speaker had a serious articulatory injury, most of his utter-
ances were unintelligible to normal people.

We compare the proposed approach with two baselines:

• Conditional GAN (cGAN): As this method is supervised,
parallel audio is needed. A normal male speaker reads the
same sentences as the patient, and the paired data is ob-
tained by aligning the utterances of the patient and the nor-
mal speaker. cGAN involves training a discriminator and a
conditional generator which takes impaired speech as input
and outputs normal speech. Here the cGAN training algo-
rithm is that from Pix2pix [26]. The network architecture
of the discriminator in cGAN is the same as in the pro-
posed approach, and the network architecture of the condi-
tional generator is the same as the cascaded controller and
generator in the proposed approach.

• CycleGAN [27]: As with the proposed approach, this
method needs no parallel data. With data from two do-
mains, CycleGAN learns a generator to transform an ob-
ject from one domain to another domain. Here we con-
sider the ASTMIC audio as one domain and the audio of
the patient as the other domain. The discriminator used in
CycleGAN also has the same network structure as the pro-
posed approach. Likewise, the generator in CycleGAN is
the concatenation of the controller and the generator in the
proposed approach.

4.2. Subjective Evaluation

To determine whether these models improve intelligibility while
preserving the content and speaker identity, we evaluate the MOS
(mean opinion score) on CycleGAN, cGAN, and our model. Fig-
ure 4 shows our MOS results. Given the original utterance and the
random shuffled utterances transformed by different models, five
subjects are asked to evaluate the audio from three aspects: (1)
how similar are the speaker characteristics before and after trans-
formation (similarity-speaker); (2) how similar is the linguistic
content before and after transformation (similarity-content); and
(3) how clear is it compared to normal speech (articulation). The
percentiles of the MOS are normalized scores indicating the ex-
tent of which subjects consider samples to be similar or articulate
respectively.

The similarity MOS indicates that our model does better than
cGAN and CycleGAN in preserving both speaker characteris-
tics and linguistic information. CGAN performs the worst de-
spite the additional use of ground truth information, because the

https://github.com/b04901014/ISGAN


(a) Impaired speech (b) Proposed model (c) NoSD model (d) CycleGAN
transformed

(e) CycleGAN
reconstructed

Figure 3: Spectrogram of impaired speech before and after transformation by each model. (a) impaired speech, (b) transformed speech
using proposed method, (c) discriminator without skip connection (NoSD), (d) transformed speech using CycleGAN, and (e) reconstructed
speech using CycleGAN.

amount of paired data is not sufficient to train the network. In Sec-
tion 4.5 we further analyze why CycleGAN does not preserve the
speaker characteristics and linguistic information. The articula-
tion MOS shows our improvement in intelligibility over impaired
speech. Audio samples for different approaches may be accessed
at https://b04901014.github.io/ISGAN/.
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Figure 4: Mean opinion score (MOS) comparison

(a) Global variance (b) Loss curve

Figure 5: (a) GV before/after transformation by the proposed ap-
proach and normal utterances. (b) Loss curve of the models for
the ablation study described in Section 4.4.

4.3. Analysis of Proposed Approach

We first show the global variance (GV) for the proposed model.
As shown in Figure 5a, the GV of impaired speech is quite differ-
ent from that of normal speech. The GV of the generated speech
is similar to that of normal utterances. Figures 3a and 3b show an
example of an impaired utterance and its transformed results us-
ing the proposed approach. As shown in Figure 3a, the orally im-
paired subject tends to have vague word boundaries, causing the
continuous forms on the low frequency bands of the spectrogram.
Figure 3b shows the ability to separate entangled word boundaries
for the first and second word. This can also be heard in the au-
dio samples. Nevertheless, we also see an obvious artifact around
2s in Figure 3b. This discontinuity is a consequence of our feed-
ing the model of each time window independently, without any

information from the previous window. This may be solved in
future work by feeding the previous window to the model as an
augmented condition.

4.4. Ablation Study

To show the contribution of each part of our model to training sta-
bility and audio quality, we conducted an ablation study. We stud-
ied three different models: (i) the proposed model, (ii) the model
without augmented input to the discriminator (NoSD)3, and (iii)
the model in which the parameters of the generator G and con-
troller C are updated to minimize both Equation (5) and (2). That
is,G andC are trained jointly without separate objectives (C&G).
Figures 5b and 3c show the functionality of the augmented inputs
of the discriminator. The NoSD model gets both lower controller
loss (LC ) and discriminator loss (LD). This indicates the con-
troller is more capable of deceiving the generator, and as a conse-
quence, the generator has less ability to generate plausible results
to confuse the discriminator. Thus the NoSD model yields a blur-
rier spectrogram in Fig. 3c than that for the proposed model in
Fig. 3b. When updatingG and C jointly (C&G), Figure 5b shows
that the discriminator loss LD quickly goes to zero, that is, the
discriminator easily separates the real normal speech and genera-
tor output. This indicates that the generator output can no longer
be similar to the normal speech.

4.5. Steganography of CycleGAN

As mentioned in [28], CycleGAN learns to hide the information
needed for reconstruction from the source domain into the tar-
get domain in an imperceptible manner. We also see this phe-
nomenon in Figures 3d and 3e. The spectrograms before and af-
ter the CycleGAN transformation are quite different (Figure 3a vs
Figure 3d), whereas after transforming back to the source domain,
the reconstructed audio is almost the same as the original input
(Figure 3a vs Figure 3e). This indicates that the cycle-consistency
loss is not a good regularizer to enforce the model to have consis-
tent input-output pairs. Instead of using cycle-consistency loss,
our method utilizes Equation (4) to maintain the consistency of
content and speaker identity of the impaired and generated audio.
As shown in Figure 4, the proposed approach is better.

5. Concluding Remarks
Here we propose a novel unparallel VC model to improve the
speech intelligibility of surgical patients who have had parts of
their articulators removed. In comparison with CycleGAN, which
also needs only unparallel data, the proposed approach not only
better improves articulation but also better preserves the linguistic
content and speaker characteristics.

3In Figure 2, the light blue arrows in the discriminator are removed.

https://b04901014.github.io/ISGAN/
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