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Abstract
The effect of stress on the human body is substantial, poten-
tially resulting in serious health implications. Furthermore,
with modern stressors seemingly on the increase, there is an
abundance of contributing factors which lead to a diagnosis of
acute stress. However, observing biological stress reactions
usually includes costly and time consuming sequential fluid-
based samples to determine the degree of biological stress. On
the contrary, a speech monitoring approach would allow for
a non-invasive indication of stress. To evaluate the efficacy
of the speech signal as a marker of stress, we explored, for
the first time, the relationship between sequential cortisol sam-
ples and speech-based features. Utilising a novel corpus of
43 individuals undergoing a standardised Trier Social Stress
Test (TSST), we extract a variety of feature sets and observe
a correlation between speech and sequential cortisol measure-
ments. For prediction of mean cortisol levels from speech,
results show that for the entire TSST oral presentation, hand-
crafted COMPARE features achieve best results of 0.244 root
mean square error [0 ;1] for the sample 20 minutes after the
TSST. Correlation also increases at minute 20, with a Spear-
man’s correlation coefficient of 0.421, and Cohen’s d of 0.883
between the baseline and minute 20 cortisol predictions.
Index Terms: acoustic features, biological signals, cortisol,
speech, Trier Social Stress Test, wellbeing.

1. Introduction
Stress can be a negative aspect of life affecting biological and
mental states in various ways. Chronic states of stress can
have an abundance of health-related consequences, e. g. , anx-
iety, weight gain and migraines, with occupational stress be-
ing a contributing factor to an employees overall task perfor-
mance [1]. Objective markers of stress are therefore needed to
help individuals recognise and appropriately respond to stress-
ful situations.

One well-known marker of stress is cortisol, a hormone re-
leased by the body in response to stressful scenarios [2]. Cor-
tisol is known to provoke a fight-or-flight response, which in-
creases brain function and the availability of substances that re-
pair tissues [3]. Through evolution, cortisol has manifested as
a means of responding to physical threats [4]. In modern life,
however, the adverse effects of cortisol can outweigh the posi-
tive, restricting nonessential functions, reducing the functional-
ity of a series of bodily processes; e. g. , the immune, digestive,
and reproductive systems [5]. Moreover, cortisol also impacts
mood and motivation [6]. Common methods for measuring cor-

tisol are typically invasive, requiring bodily fluid, e. g. , saliva-
or blood-based measurements [7].

Since cortisol offers a well-established basis for under-
standing an individual’s biological stress level, it is gathered
as a standard practice during stress-inducing psychological
paradigms [8]. These paradigms often include a public speech-
based task e. g. , the Stress Inducing Speech Task (SIST) [9]. It
has been observed that after the completion of such a speech
task, there is a delayed response in cortisol levels, which can
occur on average around 38 minutes after a stressor [10].

This finding has also been observed in the Trier Social
Stress Test (TSST) [11]. The TSST is a well established and
valid tool to induce an acute stress response [12]. The TSST
is designed to exploit the vulnerable human response to stress
during a social evaluation. Subjects are observed by interview-
ers, during three, 5 minute components which cause various
stressful states: (1) anticipation, (2) presentation, and (3) mental
arithmetic. Typically, blood and saliva samples are taken from
the individuals sequentially, both before and after the main 15
minute oral presentation [13].

In this study, we utilise a novel dataset of audio record-
ings of 43 healthy individuals speaking during a TSST scenario.
We investigate the efficacy of a variety of speech-based features
(e. g. , COMPARE , EGEMAPS and DEEP SPECTRUM) to pre-
dict the sequentially measured samples of cortisol as a marker
of biological stress. Previous research has demonstrated that
speech features can be applied to physiological based signal
predictions [14, 15]. However, to the best of our knowledge,
this is the first time that cortisol has been the prediction target.

Similar topics relating to stress prediction from speech in-
clude cognitive and physical load analysis [16]. Speech can
be reliably used to predict high and low states of both condi-
tions [17]. Typical speech changes associated with stress in-
clude increased articulation rate and the number of filled pauses,
as well a reduction in formant vowel space [18]. The effects of
stress were also investigated on works conducted on the Speech
under Simulated and Actual Stress (SUSAS) dataset [19]. The
SUSAS data is focused on investigating the Lombard effect –
an involuntary increase of speech volume – which has shown to
occur for most individuals during states of stress [19].

This rest of this paper is organised as follows. In the pro-
ceeding section (Section 2), the FAU-TSST corpus used in our
experiments is presented, including study procedure and data
processing. We then describe our experimental settings for the
task of cortisol prediction from speech in Section 3, followed
by a discussion of results in Section 4. Finally, conclusions and
future work plans are given in Section 5.
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2. FAU-TSST Corpus
To explore the relationship which may exist between speech
and cortisol, we utilise the Friedrich-Alexander-Universität
Erlangen-Nürnberg, Trier Social Stress Test (FAU-TSST) cor-
pus. This corpus is a multimodal dataset of 43 individuals un-
dergoing the renowned Trier Social Stress Test (TSST) [13].

2.1. Participants

Participants were recruited from the University campus and the
community via print and multi-media advertising and received
monetary compensation1. Before testing, eligibility was as-
sessed by an online screening-questionnaire. Exclusion criteria
were younger than 18 years of age, smoking, a body mass index
(BMI) below 18 or above 30 kg/m2, medication intake (e. g. ,
beta blocker, glucocorticoids, anti-depressants), with the excep-
tion of hormonal contraceptives in women, presence of physi-
cal or mental disorders, including clinically relevant depressive
symptoms, and previous experience with the TSST protocol.

To exclude the effects of depression on stress re-
sponses [20], the Allgemeine Depressionsskala (ADS-L)
scale [21] (Translation: General Depression Scale), was used
during screening. Participants with ADS-L scores above 22
were excluded as scores above this cutoff indicate the presence
of depressive symptomatology [21]. After data processing, the
final sample used within this study consisted of 43 participants
(µ age = 24.26 years, ± = 4.97 years, 65.1 % female).

2.2. Study Procedure

The laboratory testings took place on two consecutive days (al-
though we only utilised data from first day), and the audio mate-
rial used for the present analyses were captured on study day 1.
On each study day, participants were scheduled between 1 :00
p.m. and 7 :00 p.m. to account for the influence of circadian
cortisol variations [22]. Participants were instructed to refrain
from exercising for 24 hours before the visit, and from smok-
ing, brushing teeth, eating, and drinking anything except water
for one hour before the visit.

After arrival at the laboratory, participants were accommo-
dated in a comfortable armchair and received verbal and writ-
ten instructions. This step was followed by a resting period of
45 minutes to ensure adequate recovery from travelling to the
laboratory. During this period all participants provided verbal
and written informed consent and a baseline saliva sample (-30
minutes) was collected as the participant’s individual cortisol
baseline (S0).

Participants were then introduced to a modified version of
the original Trier Social Stress Test (TSST) [13] procedure, in
the course of which they were guided to a test room and were in-
troduced to a selection committee consisting of one female and
one male observer wearing white lab coats. Participants were
then instructed to take the role of a job applicant and to give
a five-minute speech in order to present themselves as the best
candidate for a vacant position (i. e. , their ‘dream job’). They
were given five minutes to prepare for their talk, after which
they were instructed to stand in front of the panel and to begin
their speech (hence forth named as the ‘interview’ scenario).

1Before commencement, the TSST study was approved by the
Ethics Committee of the Friedrich-Alexander-Universität Erlangen-
Nürnberg Medical School. The study was carried out in accordance
with the declaration of Helsinki, and informed consent was obtained
from all participants at study entry.
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Figure 1: Density distribution of normalised cortisol samples
from selected measurements in the sequence (S0, S3, S4 and
S7), across all speakers in the corpus.

Table 1: Speaker independent partitions, Train, (Val)idation,
and Test. Including audio instances for each scenario.

Train Val Test
∑

Speakers 15 15 14 43
Gender M:F 6:9 5:10 3:10 14:29

Interview 337 309 289 935
Arithmetic 363 311 401 1075
Combined 700 690 620 2010

Once their presentation was completed, participants were
given a mental arithmetic task (hence forth named as the ‘arith-
metic’ scenario), which took an additional five minutes, in
which they were asked to serially subtract 17 from 2 043 as
quickly as possible. In the case of any error, they were requested
to start over again. The panel remained neutral during the en-
tire task (only correcting the mistake). Immediately before at -1
minute (S1) as well as +1 (S2), +10 (S3), +20 (S4), +30 (S5),
+45 (S6), and +60 (S7) minutes after the TSST, additional saliva
samples were collected for the participants.

On the second day, participants were scheduled at approx-
imately the same time. Procedures were similar to session one
of the TSST procedures with a slightly modified version of the
arithmetic scenario (i. e. , serially subtracting 13 from 2 011).
At the end of the second laboratory session, participants were
debriefed and dismissed.

2.3. Data Processing

The audio data which is utilised in this study, was captured
during the first day of the TSST protocol, using a Sony HDR-
CX240E video camera, placed approximately 3 meters from the
subject. Given this recording scenario, the extracted audio data
(44.1 kHz, 16 bit, stereo, WAV) required a series of additional
processing steps in order to make it suitable for computational
audio analysis.

The first step was extracting the audio channel from the
video and converting the raw data to 16 kHz, 16bit, mono, WAV
files. Then, we cut the first 2 minutes (interview) and the last 2
minutes (arithmetic) from the speech data to reduce the possibil-
ity of interviewer speech. This step was undertaken consistently
for all participants.

Following this, we applied voice activity detection, utilis-
ing the Python implementation of the webrtcvad toolkit2, and
chunked the audio based on speech pauses. Given that the in-
terviewer corrects any mistakes that the subject makes during

2https://github.com/wiseman/py-webrtcvad
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the arithmetic task, we then manually removed chunks contain-
ing interviewer speech found in the arithmetic data. The data
is then normalised to -1dB across the dataset. Post-processing,
01 h: 35 m: 49 s (µ 2.8 s, ± 2.5 s per instance) of audio data re-
mained, of which 58 m: 28 s (µ 3.75 s, ± 3.24 s per instance)
was from the interview scenario and 37 m: 22 s (µ 2.08 s, ±
1.20 s per instance) from the arithmetic scenario.

For each subject in the dataset, there are eight se-
quential saliva-based cortisol samples taken at consistent
time intervals from S0 (baseline -30mins) to S7 (+60mins)
(cf. Section 2.2). These have as raw values, range from 0.69–
35.48 Nanomole/liter (nmol/L) across all subjects and mea-
surements. Given the variance, we standardised the values to
zero mean and unit standard deviation on a per-subject basis
(cf. Figure 1). For the prediction task, we then applied normali-
sation across all subjects, resulting in a range of [0 ;1] nmol/L.

3. Experimental Setting
Saliva-based measurements were taken at 8 sequential time
steps throughout the TSST process3. Given that the response
of cortisol to a stressor can be delayed (by approximately
38mins [10]), we perform a series of speech-based regression
experiments on each of the coritosl samples (S0–S7). The aim
of this analysis is to ascertain if there are any changes in the
level of correlation, between our speech features and the corti-
sol measurements, across the various time points. We also sep-
arate the different speech scenarios, namely: interview (1) and
arithmetic (2) tasks, to explore the effect of speech type.

3.1. Feature sets
We extracted both hand-crafted speech-based features, namely
the Computational Paralinguistics challengE (COMPARE ) fea-
ture set, and the extended Geneva Minimalistic Acoustic Pa-
rameter Set (EGEMAPS ). We also, as a state-of-the-art ap-
proach, extracted deep data representations from the speech sig-
nals (utilising the DEEP SPECTRUM toolkit).

As a conventional approach, the 6 373 dimensional
COMPARE feature set [23] of hand-crafted speech-based fea-
tures is used, given its effective brute-force approach for an
abundance of similar paralinguistic tasks [24, 25, 26]. Addition-
ally, we extract the 88 dimensional EGEMAPS feature set [27],
and, much like the COMPARE feature set, EGEMAPS has
shown efficacy for tasks similar to the present study [28, 29].
From each instance, the COMPARE and EGEMAPS acoustic
features are extracted with the OPENSMILE toolkit [23]. Util-
ising the default parameter settings from OPENSMILE for the
low level descriptors (LLDs) of each feature set, the higher level
suprasegmental features were extracted at a rate of 1 s, using an
overlapping window of 0.5 s.

Additionally, we extract a 4 096 dimensional feature
set of deep data-representations using the DEEP SPEC-
TRUM toolkit [30]4. DEEP SPECTRUM has shown success for
similar audio- and speech-based tasks [31], and extracts fea-
tures from the audio data using pre-trained convolutional neu-
ral networks. For this study, we extract, viridis colour map,
spectrograms using the default DEEP SPECTRUM settings with
a window size of 1 sec and a 0.5 sec overlap. The deep features
are then extracted from the layer fc7 of AlexNet [32].

3(S0) baseline 30mins before first preparation, (S1) 1min before
the first preparation, (S2) 1 after speech, (S3) 10mins after speech,
(S4) 20mins after speech, (S5) 30mins after speech, (S6) 45mins after
speech, and (S7) 60mins after speech.

4https://github.com/DeepSpectrum/DeepSpectrum

3.2. Training procedure

For our experiments, we use the epsilon-support vector regres-
sion (SVR) and a linear kernel, using the implementation from
the open-source machine learning toolkit Scikit-Learn [33]. For
training, the data is split into speaker independent sets: training,
validation and test (cf. Table 1). During the development phase,
we trained a series of SVR models, optimising the complexity
parameters (C ∈ 10−4, 10−3, 10−2, 10−1, 1), evaluating their
performance on the validation set. We re-trained the model with
the concatenated train and validation set, and evaluate the per-
formance on the test set. This method was repeated for each
of the speaking scenarios, interview (1), arithmetic (2), and in-
terview and arithmetic combined (1+2). Note, for consistency
when comparing across the sample points (S0-S7) we report
onlyC = 10−3, chosen as this value acheived frequently strong
test set results when evaluating ρ.

3.3. Evaluation metrics

To evaluate the results of our SVR experiments we utilise 2-
core metrics, (1) Spearman’s correlation coefficient (ρ) and (2)
Root Mean Square Error (RMSE). Due to space limitations we
do not display the development results for RMSE. Additionally,
we utilise Cohen’s d as a measure of effect size between the pre-
diction of results of interest. Typically, a spearmans correlations
above 0.4 is considered a moderate correlation, and a Cohen’s
d above 0.8 would be a large effect size [34].

4. Results and Discussion
When looking at the progression in results from S1 to S3, we
can see an improvement in ρ across all feature sets and sce-
narios (Table 2). The highest ρ, 0.449, was achieved with
EGEMAPS in scenario 2 (arithmetic) at sample point S3 (10
minutes after oral presentation). When extending this obser-
vation to S4 (20 minutes after oral presentation) we can see
that COMPARE features continue to improve, and so too for
EGEMAPS in scenario 1 (Table 2); however, ρ drops for all
other combinations at this point. From previous research into
the delayed (ca. 38mins) biological response of cortisol [10],
we would expect this correlation to be highest at this point (i. e. ,
from the start of test S3 25mins, and S4 45mins). Interestingly,
from the distribution of data (Figure 1), we also observe that
participants show the least amount of similarity at S3. We spec-
ulate that this may be one reason why we observe the improved
correlation at this point. However this particular phenomena
would require more fine-grained investigation

After the S4 sample, the results drop to a weak through to
no correlation, although COMPARE features retain a weak ρ,
0.149, at S6 in scenario 2 (RMSE: 0.294). This curve can be
seen when plotting the data ρ scores across the sequential mea-
surements (Figure 2). We also see the same trend although the
inverse when observing the RMSE scores. Regarding, RMSE
we see COMPARE features achieving the best score, i. e. , the
lowest, of 0.244 RMSE at scenario 1+2, S4.

The DEEP SPECTRUM features consistently achieve the
lowest ρ and highest RMSE scores across all scenarios, achiev-
ing at best ρ of 0.198 (RMSE: 0.286) at S3 scenario 1+2. The
DEEP SPECTRUM results between S0 and S3 (scenario 1+2) dif-
fer to a large extent, which is reflected by a large effect size of d
= 1.25. Similarly, the best COMPARE result, ρ 0.421 (RMSE:
0.245) at S4, also shows a large and consistent trend for effect
size in comparison to the predictions achieved for S0 to S3 d =
1.02, and S0 to S4, d = 0.88.
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Table 2: SVR with linear kernal results for the FAU-TSST corpus cortisol prediction task. Reporting (dev)elopment and test partitions
for Spearmans Correlation Coefficient (ρ), and test result for the Root Mean Square Error (RMSE). Normalised cortisol range [0, 1]
nmol/L. Reporting C = 10−3. Results are seperated for each speech (Sc)cenario (1) interview, (2) arithmetic, and (1+2) combined.
Reporting all feature sets (Ft) EGEMAPS (EGE), COMPARE (COM) and DEEP SPECTRUM (DS ), for measures S0 (baseline) to S7
(+60mins). Emphasied results discussed in Section 4.

S0 -30mins S1 -1min S2 +1mins S3 +10mins S4 +20mins S5 +30mins S6 +45mins S7 +60mins
ρ ρ RMSE ρ ρ RMSE ρ ρ RMSE ρ ρ RMSE ρ ρ RMSE ρ ρ RMSE ρ ρ RMSE ρ ρ RMSE

Sc. Ft. dev test test dev test test dev test test dev test test dev test test dev test test dev test test dev test test

1
EGE .528 .162 .299 .050 .028 .272 .298 .357 .311 .044 .315 .273 .012 .333 .271 .013 .191 .268 .050 .037 .268 .050 .116 .254
COM .475 .043 .286 .138 .023 .270 .266 .267 .290 .088 .363 .263 .152 .400 .250 .211 .363 .251 .177 .093 .251 .179 .091 .269
DS .225 -.133 .306 -.037 -.156 .295 .010 .082 .293 -.095 .154 .287 -.088 .058 .293 -.138 -.038 .294 -.135 -.093 .294 -.184 -.104 .314

2
EGE .464 .046 .309 .293 .039 .302 .044 .365 .281 .084 .449 .272 .113 .328 .283 .040 .277 .287 .052 .027 .287 .104 .067 .294
COM .399 .042 .313 .006 .021 .296 .014 .280 .264 .113 .385 .249 .101 .412 .245 .516 .386 .249 .066 .149 .249 .107 .085 .294
DS .391 .002 .301 .088 -.141 .277 -.047 .021 .314 -.145 .177 .287 -.198 .088 .286 -.248 .031 .282 -.262 .099 .282 -.208 -.001 .275

1+2
EGE .516 .129 .314 .183 .090 .285 .234 .353 .303 .029 .383 .271 .029 .314 .274 .027 .177 .274 .130 .002 .274 .122 .082 .268
COM .455 .016 .304 .450 .035 .279 .196 .280 .282 .053 .392 .258 .110 .421 .244 .148 .378 .249 .094 .097 .249 .099 .077 .281
DS .390 -.043 .306 .078 -.158 .285 .002 .060 .307 .031 .198 .286 -.158 .119 .288 -.196 .027 .287 -.238 -.076 .287 -.237 -.049 .292

When considering all results, it can be observed that
COMPARE is the consistently better-performing feature set for
this task. Although when reporting ρ as the measure of cor-
relation, results achieved using EGEMAPS features are not
significantly different to COMPARE (e. g. , S4 EGEMAPS S4
COMPARE moderately positive relationship: Pearson r = 0.513
for s1+2 results). We speculate that the success for hand-crafted
features comes from their tailored speech-based attributes i. e. ,
leverage features, e. g. , loudness, which have been discussed
as being appropriate for other health-related speech tasks such
as depression, or Parkinson’s detection [35]. Additionally, we
speculate that the weaker results of DEEP SPECTRUM features
which, are extracted from spectral features only, could be due
to the higher levels of ambient room noise present in the audio
signal, as a consequence of the recording methods.

Finally, it would appear that there are minimal differences
between the speaking scenarios. With a tendency toward better
results across all feature sets and sample points, the scenario-2
(arithmetic) results are stronger, when observing ρ, µ ρ 0.151
from, S0 - S7 (µ ρ 0.123, 0.138, for scenario 1 and sce-
narios 1+2 respectively). However, for RMSE, a µ of 0.292
was achieved in Scenario-2 across all samples and features
sets, compared with 0.281 and 0.283 for scenario 1 and sce-
nario 1+2, respectively. This observation leaves us to speculate
that perhaps there was some advantage when using scenario 2
speech features, as, from a qualitative observation of the data,
the visible stress in the subject does seem to be elevated dur-
ing the arithmetic task. This effect may be due to the lack of
preparation time that the subject had for this task as compared
to the interview. Gaining further insight in this regard would,
however, require more in-depth analysis.

5. Conclusion and Future Outlook
In this study we have evaluated the ability for speech-based fea-
tures to predict cortisol levels as a marker of biological stress.
Findings have shown that speech-based features can achieve
at best 0.244 RMSE (ρ 0.421) with COMPARE features at S4
(+20mins after speech), and in this same way correlation in-
creases from samples taken at S0 to S3 and S4. Observing
an improvement trend when utilising the features from stressed
speech as cortisol samples reach the sample taken at the 10th
minute (a finding which is supported by the literature in rela-
tion to delayed biological response to cortisol response [10]),
this finding is consistent across all features sets, suggesting that
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Figure 2: Result for Root Mean Square Error (RMSE) (above)
and Spearmans Correlation Coefficient (ρ) (below) on test
for C = 10−3, of scenario 1+2, across each feature sets
EGEMAPS , COMPARE and DEEP SPECTRUM (DS), for mea-
sures S0 (baseline) to S7 (+60mins).

an acoustic-based approach is suitable for the prediction of cor-
tisol as a marker of stress.

With speech features from individuals in a stressed state
showing promise for the task of cortisol prediction, particularly
hand-crafted sets, future work would include feature selection,
as a means of taking a closer look at the particular speech based
features from such sets which are responsible for this. Addi-
tionally, given the varied speaking scenarios it may be of inter-
est to evaluate the word-use within the FAU-TSST corpus more
closely. From the analysis approach, it would also be an advan-
tage to implement state of the art deep architectures, utilising
a multimodal fusion approach, given the extensive modalities
which are made available through the FAU-TSST data.
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