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Abstract
We investigated the training of a shared model for both text-
to-speech (TTS) and voice conversion (VC) tasks. We pro-
pose using an extended model architecture of Tacotron, that is
a multi-source sequence-to-sequence model with a dual atten-
tion mechanism as the shared model for both the TTS and VC
tasks. This model can accomplish these two different tasks re-
spectively according to the type of input. An end-to-end speech
synthesis task is conducted when the model is given text as
the input while a sequence-to-sequence voice conversion task
is conducted when it is given the speech of a source speaker as
the input. Waveform signals are generated by using WaveNet,
which is conditioned by using a predicted mel-spectrogram. We
propose jointly training a shared model as a decoder for a target
speaker that supports multiple sources. Listening experiments
show that our proposed multi-source encoder-decoder model
can efficiently achieve both the TTS and VC tasks.
Index Terms: joint training, text-to-speech, voice conversion,
Tacotron

1. Introduction
Text-to-speech (TTS) and voice conversion (VC) are two typical
technologies for generating speech waveform. TTS is a technol-
ogy that synthesizes natural-sounding human-like speech from
text. The traditional approaches to TTS can be divided into
two categories: a waveform concatenation approach and sta-
tistical parametric approach. Recently, along with develop-
ments on deep learning, neural-network-based end-to-end ap-
proaches have been proposed to achieve better performance,
such as Tacotron [1], DeepVoice/Clarinet [2], and Char2Wav
[3].

Voice conversion is a technology that modifies the speech
of a source speaker and makes their speech sound like that of
another target speaker without changing the linguistic informa-
tion. Many standard voice conversion approaches can be formu-
lated as a regression problem of estimating a mapping function
between the spectrum features of a source speaker and a tar-
get speaker. Gaussian mixed model (GMM) based approaches
[4, 5, 6] try to learn a linear transform from source to tar-
get features on the basis of the joint probability of these fea-
tures by using a GMM. Dynamic kernel partial least squares
regression (DKPLS) [7] and neural network based approaches
[8, 9, 10, 11, 12, 13] learn non-linear transforms. To make
use of non-parallel source-target speech corpora, voice conver-
sion based on the variational autoencoder (VAE) [14] and cycle-
consistent generative adversarial network [15, 16, 17, 18] were
proposed.

So far, even though various successful methods have been
proposed for TTS and voice conversion, most of the systems
can achieve only one task. For each problem, the network ar-

chitecture is designed for the targeted task only and involves a
long period of tuning specifically for the problem. This proce-
dure needs to be repeated for different tasks, and this restrict the
powerful effect of the neural network.

However, we see that theoretical differences between VC
and TTS are currently becoming much smaller than their orig-
inal narrow definitions. To give a few examples, the recent ad-
vanced high-performance VC systems gain from the use of the
phone posteriorgram (that is, a continuous phone representa-
tion) of inputted speech [19]. There was also an attempt to use
both the spectrum features and phone posteriorgram to further
improve the performance of voice conversion [20]. We can also
see similar trends for TTS. The end-to-end TTS system some-
times also uses phone-embedding vectors as the input instead
of letter inputs [2, 21]. There was also an attempt to use a refer-
ence audio signal as the additional input for Tacotron to transfer
the prosody of the reference audio into synthetic speech via a
reference encoder [22]1. Given the above trends, we strongly
believe that we can construct one model shared for both the TTS
and VC tasks. This idea is reasonable since any improvement
of the proposed model is expected to improve both tasks and we
can also utilize speech databases for both tasks at the same time.
This will also give us a good opportunity to deeply re-consider
fundamental differences between VC and TTS.

To achieve this goal, we propose a multi-source sequence-
to-sequence model with dual attention mechanism. We assume
that both TTS and voice conversion can be divided into two
parts: an input encoder and an acoustic decoder. The difference
between the two tasks is that the input of TTS is text characters
while that of voice conversion is acoustic features. The model
can be thought of as an encoder-decoder model that supports
multiple encoders. The role of multiple encoder networks is the
frond-end processing of each type of input data and the role of
a decoder network is to predict acoustic features required for
waveform generation. Inspired by the success of end-to-end
TTS models, we adopt architectures similar to Tacotron for the
encoders and decoder. More specifically, we have two encoders
that encode different inputs and a shared decoder that predicts
the acoustic features, followed by the generation of high-quality
waveform signals based on WaveNet, a generative model for
raw audio waveforms [24]. The other contributions of our work
are as follows. First, to achieve better TTS performance with
a small amount of training data, we adapt a pre-trained TTS
model to a target speaker. Second, for voice conversion, we
train a many-to-one conversion to increase the size of training
data while restricting the use of parallel data.

The rest of the paper is arranged as follows. Section 2 in-
troduces the end-to-end speech synthesis model Tacotron. In
Section 3, we describe our proposed joint training model for

1There is also a task called prosody conversion in the VC field [23].
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Figure 1: Block diagram of Tacotron system with WaveNet
vocoder

TTS and voice conversion. Section 4 presents experiments and
the results of a large-scale listening test. We conclude our paper
and discuss future work in Section 5.

2. Tacotron
Tacotron is an end-to-end text-to-speech (TTS) system that syn-
thesizes speech directly from characters [1]. The architecture
of Tacotron is a sequence-to-sequence model with an attention
mechanism [25]. Figure 1 illustrates a diagram of Tacotron,
which includes an encoder that maps an input text sequence to
a fixed-dimensional state vector and an attention-based decoder
that predicts a mel spectrogram. The WaveNet vocoder is con-
ditioned on the predicted mel spectrogram to generate speech
waveforms.
2.1. Architecture
The input of the encoder is a sequence of characters, where each
character is encoded as a one-hot vector and embedded into a
continuous vector. These embedded vectors are then processed
by a pre-net that contains a bottleneck layer with dropout. The
outputs of the pre-net are used as the input to a CBHG module
to produce the final results of the encoder. The CBHG module
consists of a convolutional bank, highway network and bidirec-
tional gated recurrent unit (GRU).

The decoder is an auto-regressive (AR) recurrent neural net-
work (RNN) that predicts a sequence of mel spectrum vectors
from the encoder outputs. A Bahdanau attention mechanism is
used to summarize the encoder output as a fixed-length context
vector. The concatenation of the context vector and the out-
put of an attention RNN are used as the input to the decoder
RNN. The target feature of the decoder is a mel spectrogram.
At run-time, the predicted mel spectrum vector of the previous
time step is fed to the pre-net to generate the input of the at-
tention RNN. During training, the ground truth mel spectrum of
the corresponding frame is fed to the pre-net.
2.2. Adaptation of Pre-trained Tacotron Model
Training a Tacotron-based TTS system from scratch normally
requires a large amount of data, for example, usually at least a
few hours of speech [1], even though there is the know-how to
reduce the amount of required data, such as decoder pre-training
[26]. In this study, we assume that the amount of speech data
available for a target speaker is as small as the usual VC task
and is less than one hour.

In this situation, it is reasonable for us to conduct speaker
adaptation by using a Tacotron model that is well- and pre-
trained with a target speaker in order to compensate for the
data size restriction. Such adaptation of a pre-trained speech

synthesis model usually involves two steps: training a high-
performance model by using large-scale speech corpora and us-
ing the well-trained model as the initial seed model and fine-
tuning with a small amount of training data from the target
speaker. In our case, we pre-trained a Tacotron by using the
LJ Speech database and adapted it to a different female speaker
included in the CMU ARCTIC database.

3. Joint Training of TTS & VC
Our proposed multi-source Tacotron model is illustrated in Fig-
ure 2. It consists of a TTS input encoder, a VC input encoder,
and a dual attention mechanism-based acoustic decoder fol-
lowed by a WaveNet vocoder.
3.1. Encoders
Both TTS input and VC input encoders have the same architec-
ture, which includes a pre-net and a CBHG network. Each en-
coder transforms the corresponding input sequences into a fixed
dimension state vector and a set of encoder output vectors:

st,ot = Encoder(xt) (1)
sv,ov = Encoder(xv), (2)

where xt = {xt1, xt2, ..., xtM} denotes the character embed-
ding sequence of length M that is the input to the TTS encoder,
xv = {xv1 , xv2 , ..., xvN} denotes the source mel spectrogram of
N frames that is the input to the VC encoder, st and ot respec-
tively represent the state vector and output sequence of the TTS
encoder, and sv and ov respectively represent the state vector
and output sequence of the VC encoder.
3.2. Dual Attention-based Decoder
The decoder of our model is based on the decoder of Tacotron,
and it consists of a pre-net, an attention RNN layer, and a de-
coder RNN layer. Since a character embedding sequence and
mel spectrogram have different time scales and we have to cope
with the asynchronous input sequences, we use a dual attention
mechanism. Two independent attention mechanisms Attt and
Attv are used for transforming the outputs of the TTS and VC
input encoders into context vectors, respectively.

At every output step k, the attention RNN produces the
state ha

k and the output vector oak, given the previous step state
ha
k−1, context vectors ctk−1 and cvk−1, and pre-net output opk.

Attention vector are generated from the output state and the en-
coder output vectors ot and ov, and they are then combined
with the encoder outputs to produce the context vectors ctk and
cvk. The two context vectors and the attention RNN output are
concatenated as the input of the decoder RNN. We use a fully-
connected layer to predict the r frames of the mel spectrogram
of the target speech data from the decoder output odk, repre-
sented as {ŷ(k−1)r+1, ..., ŷkr}. The ground truth of the last
predicted frame is fed to the pre-net to produce the next step
output. At the first output step, the concatenation of the final
encoder states sv and st is used as the input of the attention
RNN instead of the previous step state. The procedures of the
dual attention-based decoder are summarized as follows.

opk = PreNet(y(k−1)r) (3)

ha
k, o

a
k = AttRNN(ha

k−1, c
t
k−1, c

v
k−1, o

p
k) (4)

ctk = ot ·Attt(ha
k,o

t) (5)
cvk = ov ·Attv(ha

k,o
v) (6)

odk = DecoderRNN(hd
k−1, o

a
k, c

t
k, c

v
k) (7)

{ŷ(k−1)r+i} = fc(odk) (i = 1, ..., r) (8)
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Figure 2: Model architecture of our proposed multi-source sequence-to-sequence model for training TTS & VC simultaneously. Random
maskers are applied to all decoder steps.

3.3. Random Selection of Input Encoders
Networks with multi-source inputs can often be dominated by
one of the inputs [27]. In our proposed framework, since map-
ping from a source mel spectrogram to target mel spectrogram
is much easier than mapping from a character embedding to a
target mel spectrogram, the model will be dominated by the mel
spectrogram input. To alleviate this problem, one of the follow-
ing input types is randomly chosen during training: character
embedding only, source mel spectrogram only, or both of the
inputs to ensure that we only give specific input information to
the decoder. To achieve this, we introduce a random masker
for indicating which input to use during the training. Using the
masker, we set the context vector that belongs to the unused
input types to zero.
3.4. Training Procedures of Joint Model
Even with this strategy, when the model is trained from scratch,
we still encounter the same problem, meaning that only map-
ping from spectrogram to spectrogram works. To prevent this
from happening, we conduct the following step-by-step train-
ing. We first train the two tasks’ models separately and then use
the encoder from each trained model to initialize the encoders
of the multi-source model. Here, the TTS stand-alone model
is adapted from a pre-trained TTS as described in Section 2.
The VC stand-alone model is a many-to-one VC trained with
parallel utterances from multiple source speakers and a target
speaker.

Then, we jointly train the multi-source model with two in-
puts by using the dual attention mechanism. This mechanism
allows the model to extract information from both character em-
bedding and mel spectrogram inputs, even when one of them is
absent, or the two of them are not time aligned.

3.5. Generation Stage
Different from the teacher-forcing training method, the model
at run-time does not have a ground truth to feed to the pre-net in
the decoder. Therefore, we use the last frame of the r previously
predicted frames as the input of the pre-net. Then, equation (3)
now becomes as follows.

opk = PreNet(ŷ(k−1)r) (9)

Given the different kinds of input to our proposed framework,
we can choose which task should be achieved by setting the

masker. If we use only the character embedding input, the sys-
tem becomes a TTS model. If we use only the source mel spec-
trogram input, the system becomes a VC model. If we use both
of the inputs, we can see this as a hybrid model of TTS and VC.
We will compare the performance of these models in Section 4.

4. Experiment
4.1. Datasets
For the training of the pre-trained TTS model, we used the LJ
Speech database, which consists of 13,100 short audio clips of
a single speaker reading passages from 7 non-fiction books and
has a total length of approximately 24 hours [28]. For the adap-
tation of the pre-trained TTS model, we used 500 utterances of
a female speaker, SLT, from the CMU ARCTIC database [29].

For the training of the many-to-one VC model, we con-
ducted a mapping from male speakers to a female speaker. The
source speakers were two male speakers, BDL and CLB, from
the CMU ARCTIC database, and the target speaker was SLT.
We used exactly the same 500 utterances from SLT that were
used to adapt TTS as the target speech data. The source speech
data was the parallel data of the target speech from the two male
speakers. This increased the training data size, and we had a to-
tal of 1,000 utterances.

4.2. Experimental Setup
We extracted 80-band mel spectrograms from all of the speech
data as the source and target spectrum features. The frame
length was 50ms and the frame shift was 12.5ms. We converted
the input text characters into 256-dimension character embed-
ding vectors to form the inputs of the text input encoder. We set
the reduction factor parameter r = 2 to predict two frames of
mel spectrogram in one step.

To measure the performance of our proposed framework,
we evaluated our model and compared it with the following sys-
tems.

• TTS: Stand-alone model of adapted TTS system

• VC: Stand-alone many-to-one VC model using same
source speakers and target speaker

• Hybrid TTS: Proposed model with only text input

• Hybrid VC: Proposed model with only source speaker’s
speech input



• Hybrid TTS & VC: Proposed model with both text and
source speaker’s speech inputs

In addition to the above synthesis/conversion systems, we fur-
ther added two systems for calibration: one for two source
speakers and one for the target speaker. Therefore, we had in
total seven systems for comparison. We randomly selected 132
sentences or 132 pieces of source speech for synthesizing or
converting the inputs2. Note that 66 source speech waveforms
came from one source speaker, BDL, while the rest were from
the other source speaker, CLB.

We trained our model with a batch size of 32 by using the
Adam optimizer with β1 = 0.9, β2 = 0.999, and the initial
learning rate was 0.002 with the Noam decay scheme [30]. In
the model architecture, the pre-net was a dense layer with a
dropout of 0.5, and the output dimension was 128. In the CBHG
module, the 1-D convolutional bank was 16 sets of 1-D convo-
lutional filters with 128 output channels with ReLU activation.
The convolutional outputs were max pooled with a stride of 1
and a width of 2. Then, we passed the sequences to a convolu-
tion layer with width of 3 and 128 output channels with ReLU
activation, followed by a convolution layer with width of 3 and
128 output channels. The highway network consisted of 4 lay-
ers of fully-connected layers with a 128 output dimension and
ReLU activation. The bidirectional GRU RNN layer had 128
cells. The attention RNN was a 1-layer GRU with 256 cells.
The decoder RNN was a 2-layer residual GRU with 256 cells.

The five experimental systems used the same WaveNet-
vocoder to generate the speech waveforms with a sampling
rate of 16k Hz and 10-bits µ-law quantization. This WaveNet-
vocoder processed an input mel spectrogram by using a bi-
directional LSTM recurrent layer and a one-dimensional convo-
lution layer with a window size of 3, after which it upsampled
the processed features to 16k Hz. Both the LSTM and con-
volution layers had a layer size of 64. The WaveNet-vocoder
contained 30 dilated convolution layers, and the k-th layer had
a dilation size of 2mod(k−1,10), where mod(·) was the modulo
operation. The output of the dilated convolution layers and that
of the skip channel had 64 and 256 dimensions, respectively.
The network was trained by using Adam with a learning rate of
0.0003.

4.3. Listening Experiments

The quality of the speech samples and its similarity to the target
speaker were evaluated in a 1-to-5 Likert mean opinion score
(MOS) test. This evaluation was carried out with a web-based
interface on a crowdsourcing platform. On each web page, we
presented two questions, one for speech quality and the other
for speaker similarity. The evaluators were required to fully
listen to one sample before evaluating it. Each evaluator could
evaluate at most 210 speech samples. In total, 97 evaluators par-
ticipated in the test and produced a total of 18480 MOS scores.
Accordingly, each speech sample received 10 quality and 10
similarity scores.

The results for speech quality and speaker similarity are
shown in Figure 3 and Figure 4, respectively. It was observed
that our proposed model worked for both the TTS and VC tasks.
We can see that the hybrid VC system outperformed the VC
stand-alone system in terms of both speech quality and speaker
similarity. This indicates that our proposed model improved
the performance of VC. However, the MOS results for the hy-

2Audio samples of synthetic and convert speech are available at
here.
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brid TTS system were worse than those for the TTS stand-alone
system. We can hypothesize several reasons for this. First, the
current multi-source model might still be over-fitting to the VC
task. Second, it might not have sufficient parameters for doing
both the TTS and VC tasks. We may need to increase the num-
ber of parameters especially for the TTS task. Third, random
selection may not be the best strategy for the maskers of the
input encoders. Better scheduling of the maskers needs to be
investigated.

5. Conclusion and Future Work
In this paper, we proposed a joint model for both the TTS
and VC tasks. The architecture of our model is based on
Tacotron. Given text characters as input, the model conducts
end-to-end speech synthesis. Given the spectrogram of a source
speaker, the model conducts sequence-to-sequence voice con-
version. The experimental results showed that our proposed
model achieved both TTS and VC tasks and improved the per-
formance of VC compared with the stand-alone model. Our fu-
ture work will be to investigate a better method for the maskers
of the input encoders and a more appropriate training algorithm.
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