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Abstract
Code-switching (CS) refers to a linguistic phenomenon where
a speaker uses different languages in an utterance or between
alternating utterances. In this work, we study end-to-end (E2E)
approaches to the Mandarin-English code-switching speech
recognition task. We first examine the effectiveness of us-
ing data augmentation and byte-pair encoding (BPE) subword
units. More importantly, we propose a multitask learning
recipe, where a language identification task is explicitly learned
in addition to the E2E speech recognition task. Furthermore,
we introduce an efficient word vocabulary expansion method
for language modeling to alleviate data sparsity issues under the
code-switching scenario. Experimental results on the SEAME
data, a Mandarin-English code-switching corpus, demonstrate
the effectiveness of the proposed methods.
Index Terms: Code-switching, speech recognition, end-to-end,
multitask learning, language identification

1. Introduction
Code-switching (CS) is a linguistic phenomenon, where
speaker’s utterances contain different languages, either inside
a given utterance or between utterances. It frequently appears
in world wide areas. Therefore, developing a code-switching
speech recognition (CSSR) system is important and has re-
ceived increasing attention recently.

While DNN-HMM-based automatic speech recognition
(ASR) framework is popular in code-switching speech recog-
nition [1, 2], it has some clear limitations. Firstly, one needs to
build a big lexicon mixed with words from different languages,
and it would take more human efforts to label pronunciations
for those words from different languages. Secondly, acoustic
modeling (AM), language modeling (LM) and lexicon model-
ing components of the DNN-HMM-based ASR system, which
are optimized separately. This would lead to sub-optimal per-
formance.

In this paper, we pursue an End-to-End (E2E) strategy to re-
solve Mandarin-English code-switching speech recognition in-
stead. In contrast to the DNN-HMM-based approach, it doesn’t
require any lexicon modeling efforts. More importantly, the
entire recognition system comprises compactly connected neu-
ral networks that are jointly learned from scratch. To our
best knowledge, this is the first attempt of using E2E strategy
to code-switching speech recognition task. Our contributions
mainly lies in the following aspects.

Firstly, we manage to build competitive E2E baseline sys-
tems using data augmentation and byte-pair encoding (BPE)
based subword units [3–5]. We found data augmentation is
more effective to the E2E framework than the DNN-HMM-

based one. Besides, we found the BPE subword units yield bet-
ter recognition results than characters. This is consistent with
what is reported in [3].

Secondly, we employ a multitask learning (MTL) [6]
method to enhance our E2E-based code-switching ASR system.
Specifically, we propose to use language identification (LID) as
the auxiliary task to help improving the speech recognition per-
formance. It showed that the LID-based MTL helps on Token
Error Rate (TER) reduction.

Thirdly, to alleviate the cross-lingual data sparsity issue in
language modeling, we introduce a word vocabulary expansion
method inspired by [7]. Note that in [7], this technique is ap-
plied for monolingual data to improve the speech recognition
performance when its output is rescored by language modeling,
while this work applies it to the code-switching language model
rescoring.

The paper is organized as follows. Related work are
presented in Section 2. Then, proposed multitask learning
E2E code-switching speech recognition approaches and code-
switching word vocabulary expansion LM rescoring are intro-
duced in Section 3. Experimental setups are described in Sec-
tion 4, then experimental results and analysis are reported in
Section 5. Finally, we conclude and talk about future work in
Section 6.

2. Related work
Previous works on code-switching speech recognition relied
on the conventional GMM-HMM or DNN-HMM framework
[1, 2, 8, 9]. Recently, end-to-end speech recognition methods
have drawn much attention and produced promising recogni-
tion results [10–17]. There are two main directions for end-
to-end speech recognition. One is the earlier proposed Con-
nectionist Temporal Classification (CTC) [10], and the other is
the attention mechanism based method [11]. CTC performed
well on various corpora such as WSJ [12, 13] and SWB [14].
Recently, inspired from the attention-based machine translation
framework [15], attention-based E2E began to play a crucial
role in speech recognition, achieving the state-of-the-art results
[16]. Despite the two methods are different, researchers in [17]
exploited the advantages of each methods to build the hybrid
CTC/attention based E2E ASR system, which leads to better
results compared to an ASR system built with either single
method.

We apply end-to-end approach to code-switching speech
recognition task in this paper. This differs from the previous
end-to-end speech recognition that has worked only for mono-
lingual case. Recently, it was shown that E2E method can be
employed to perform multilingual speech recognition simulta-
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neously [18, 19]. However, the multilingual speech recognition
is not a code-switching task.

3. Approaches to end-to-end CSSR
In this section, we present various approaches to achieve better
end-to-end code-switching speech recognition. We first aim to
build competitive baselines. To start with, we investigate data
augmentation method and study different subword units as the
output of the end-to-end CSSR system. After that, we employ a
multitask learning by introducing the LID as the auxiliary task
to boost the performance of our end-to-end CSSR. Finally, we
propose a modified neural language modeling framework, aim-
ing to alleviate the cross-lingual data sparsity issue within the
CSSR task.

3.1. Approaches to develop E2E CSSR baselines

One major challenge of building the E2E system is that it re-
quires a lot of data to train the model [20]. To deal with this
problem, we apply speech speed perturbation based data aug-
mentation method proposed in [21, 22], as the effectiveness of
the method has been proved in the conventional DNN-HMM
ASR method. By manipulation, we obtained x3 times of the
original data, with a speaking rate of 90%, 100%, and 110%
of the original data respectively. In this work, E2E with data
augmentation is one of our baseline.

Another issue for E2E system is how to select the output
units. As we are dealing with both Mandarin and English output
units simultaneously, it sounds straightforward to use characters
as the units. However, this will result in only 26 output units
for English and several thousand for Mandarin. We conjecture
that such an unbalanced situation will be disadvantageous to
English, yielding worse recognition results. To balance the units
between the two languages, we decide to use subword units [16]
for English. BPE subword units have shown to be helpful for
English [3]. As a result, in this work, we use the BPE subwords
for English, while leaving the output units of Mandarin fixed
with characters. Therefore, another baseline in this work is to
apply BPE subword units on the E2E system trained with data
augmentation.

3.2. Multitask Learning of CSSR with LID

Inspired from the work in [17], we adopted a hybrid CTC/atten-
tion based E2E architecture to conduct CSSR.

Specifically, let X be the input acoustic sequence, Y
be the output sequence comprising characters or BPE units,
LCTC(Y |X) be the CTC objective loss, Latt(Y |X) be
the attention-based objective loss. Then, the objective loss
LMTL(Y |X) of the entire hybrid E2E system is as follows:

LMTL(Y |X) = λ1Latt(Y |X) + (1− λ1)LCTC(Y |X) (1)

where λ1 ∈ [0, 1] is a hyper-parameter to control the contribu-
tion of each model.

For the code-switching system, although we can infer the
language identification from the decoding transcription, the lan-
guage information has not been used explicitly during training.
We believe that using the language identification would improve
the CSSR performance. To this end, we extend the multitask
learning method as indicated in Eq (1). The framework is illus-
trated in Figure 1. As a result, the whole training objective loss

is changed as follows:

LMTL(Y |X) = λ1Latt(Y |X) + (1− λ1)LCTC(Y |X)

+ λ2Llid(Z|X)
(2)

where Z is the output LID sequence, Llid(Z|X) represents the
LID objective loss, and we restrict λ2 ∈ [0, 1].

As indicated in Figure 1, we have investigated two meth-
ods to incorporate the LID into the hybrid CTC/attention frame-
work. One is to share the same attention model with the speech
recognition task (LIDshared), and another is to learn an inde-
pendent attention model by itself (LIDindep). Both methods use
the same objective function as in the Eq (2).

Encoder
(Shared)

Attention
(Shared)

Decoder
CTC

X

Y

Decoder

Z (LID)

Encoder
(Shared)

Attention

Decoder
CTC

X

Y

Decoder
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Figure 1: A multitask learning (MTL) framework with language
identification (LID) for E2E-based CSSR. The LID task can
share the same attention module (left) or use a separate atten-
tion module (right).

3.3. Vocabulary expansion for neural language model

The performance of E2E speech recognition can be further im-
proved when its output is rescored by neural language model
(NLM) [11]. However, the vocabulary coverage of the NLM
is usually a shortened list of the entire ASR vocabulary, and
such the list is usually only composed of most frequent words,
due to the necessity of learning complexity restriction. Conse-
quently, the probability of those infrequent words that are out-
of-shortlist are not well learned by the NLM.

In code-switching speech recognition scenario, we treat
those words that occur at the cross-lingual transition positions
as ‘infrequent’ words, in addition to other ‘infrequent’ words
that we have in monolingual text. The main idea is to ‘borrow’
probability mass for such ‘infrequent’ words (target words)
from those words that are in the shortlist and semantically close
to the target words, as advocated in [7].The benefit of using
the method in [7] is that we don’t have to learn a big NLM.
However, the downside of the method is that word semantic
clustering is needed beforehand. This can be done with word
embedding vector. For the more details of implementation, one
can refer to [7].

4. Experimental setup
4.1. Data

We conduct experiments on the SEAME corpus [23] which is a
spontaneous conversational Mandarin-English code-switching
speech corpus. The duration of utterances that contain code-
switching is about 68% in our training set. We define two test
sets that contains code-switching speech [2]. Detailed division
of SEAME Corpus can be seen in Table 1. One is biased to



Mandarin speech (denoted as devman), and another is biased to
Southeast Asian accent English (devsge). Each test set contains
10 speakers with balanced genders1. In what follows, we re-
port token error rate (TER, Chinese character and English word
respectively) on the test data.

Table 1: The detailed division of SEAME Corpus,‘Man’, ‘En’
and ‘CS’ mean pure Mandarin, pure English and Mandarin-
English code-switch inside utterance.

Speakers Hours Duration Ratio
Man En CS

train 134 101.13 16% 16% 68%
devman 10 7.49 14% 7% 79%
devsge 10 3.93 6% 41% 53%

4.2. DNN-HMM baseline system

Besides two baselines in Section 3.1, we also build a DNN-
HMM system as another baseline for comparison. We use Kaldi
toolkit [24] to train a lattice-fee maximum multual information
(MMI) based time delay neural network (TDNN) [25]. The
TDNN has 6 hidden layers with 1024 hidden units, and the in-
put features are 40 dimensional MFCC plus 100 dimensional
i-vectors. The outputs are senones that are langauge indepen-
dent. For language modeling, we only use the transcriptions of
the training part of the SEAME data to train the 4-gram lan-
guage model.

4.3. E2E ASR system setup

We use ESPnet toolkit[26]2 to train our E2E ASR system. The
encoder consists of one-layer CNN and six-layers BLSTM with
320 hidden units. The decoder consists of one-layer LSTM with
320 hidden units. CTC weight (1 − λ1) is fixed with 0.2. The
attention method used in this work is a combination of content-
based and location-based methods [27]. To train a BPE subword
model, setting character coverage rate for 0.9995 to determine
the minimum Mandarin-English mixed symbols, which results
in minimum 1806 character symbols. Since we attempt to build
4 BPE subword models with the vocabulary size 1.9k, 2k, 3k
and 4k units, all that have dictionary bigger than 1806.

5. Experimental results and analysis
5.1. Results of the E2E CSSR system

Table 2 reports our TER results of the E2E CSSR system with
different setups, using those from the Kaldi LF-MMI TDNN
CSSR system as a contrast.

We have three observations from in Table 2. Firstly, our
E2E ASR systems are not as competitive as the LF-MMI TDNN
systems in general. This suggests that further effort is required
to improve the E2E ASR system at least on the limited training
data. Secondly, data augmentation significantly helps on TER
reduction for our E2E ASR system, suggesting that more data
might further reduce the performance gap between our E2E and
LF-MMI TDNN systems. Thirdly, the BPE subword units are
much more effective than the character units and the 3k BPE
produces best results.

1Our KALDI format based test sets are released in the following
link: https://github.com/zengzp0912/SEAME-dev-set

2https://github.com/espnet/espnet

Table 2: The TER of different E2E CSSR systems as compared
to the LF-MMI TDNN ASR counterparts.

System Data
Aug Subword TER (%)

devman devsge
Kaldi-TDNN No N.A 23.5 32.0
Kaldi-TDNN-DA Yes N.A 22.1 30.9
E2E-CHAR No Character 34.5 46.4
E2E-DA-CHAR Yes Character 26.5 38.4
E2E-DA-BPE1.9k Yes BPE 26.7 36.3
E2E-DA-BPE2k Yes BPE 26.6 35.9
E2E-DA-BPE3k Yes BPE 26.4 36.1
E2E-DA-BPE4k Yes BPE 26.6 36.2

One of the differences between the CSSR and the mono-
lingual ASR is that there is cross-lingual substitutions for the
CSSR. Table 3 reports various kinds of substitution rates from
different E2E systems. We note from Table 3 that there are
much fewer cross-lingual substitution than same language sub-
stitutions, and they are about 10% on each test sets. Besides, it
can be seen that SE→M is higher than SM→E by ∼5% which
indicates that more English words is substituted by Mandarin
characters than the other way.

Table 3: Different substitution (Sub) errors, where ‘M’ and ‘E’
stand for Mandarin and English respectively.

Sub System devman (%) devsge (%)

SE→E
E2E-DA-CHAR 30.8 38.5
E2E-DA-BPE-3k 20.9 25.3

SE→M
E2E-DA-CHAR 8.4 5.0
E2E-DA-BPE-3k 8.0 5.2

SM→E
E2E-DA-CHAR 2.7 5.2
E2E-DA-BPE-3k 3.0 5.1

SM→M
E2E-DA-CHAR 12.9 14.7
E2E-DA-BPE-3k 13.0 14.7

Table 4 shows the top 5 examples of cross-lingual substitu-
tion on both test sets. From Table 4, most of the cross-lingual
substitution are only involved with those non-content or acous-
tically similar modal words that are rather short.

Table 4: Top 5 cross-lingual substitution examples, where ‘M’
and ‘E’ stand for Mandarin and English respectively.

SM→E SM→E

Ref Hyps count Ref Hyps count
ah 啊 87 的的的 the 39
eh 诶 75 咯 lor 36
er 呃 38 哦 oh 21
the 的的的 37 有有有 you 18
oh 哦 36 诶 eh 17

5.2. Effect of MTL with LID

Figure 2 shows the TER of the two MTL with LID for E2E
CSSR methods, LIDshared and LIDindep, at different weighting
factor λ2 in Eq (2). The baseline results are the corresponding
best results from Table 2, i.e. E2E-DA-CHAR and E2E-DA-
BPE3k. We observe that the two methods improve the results
in most cases, and both methods can yield the best results when
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Figure 2: TER results of the MTL with LID for E2E CSSR: TER versus LID weighting factor (λ2), devman is indicated by left axis,
while devsge is indicated by right axis.

λ2 is around 0.2. However, there are no obvious difference be-
tween the two methods.

Table 5 reveals the TER results of the two E2E MTL frame-
work with LID CSSR methods with λ2 = 0.2. Overall, the pro-
posed methods yield improved results though not significant. It
seems more effective when it is applied to the character based
system.

Table 5: TER(%) results of the two E2E MTL framework with
LID CSSR methods (λ2 = 0.2). ‘Man’, ‘En’ and ‘ALL’ mean
English, Mandarin and total TER of the test sets respectively.

Systems devman (%) devsge (%)
Man En ALL Man En ALL

E2E-DA-CHAR 21.8 39.2 26.5 28.1 44.2 38.4
+ LIDshared 21.8 38.7 26.3 27.7 43.6 37.9
+ LIDindep 21.0 38.0 25.6 27.3 42.4 37.0
E2E-DA-BPE3k 22.3 37.2 26.4 28.1 40.5 36.1
+ LIDshared 21.9 37.0 26.0 27.8 40.4 35.9
+ LIDindep 21.8 37.3 26.0 27.7 40.3 35.8

5.3. Effect of the NLM vocabulary expansion

Table 6 reports the TER results of the N-best (N=30) rescoring
with the NLM vocabulary expansion method, where the NLM
is the RNN-LM in practice. We see from Table 6 that the pro-
posed NLM vocabulary expansion method achieved consistent
improved TER results over the best results shown in the last row
of Table 5. Finally, experiment results showed that applying the
proposed approaches significantly reduces the TER of two dev
sets from 34.5% and 46.5% to 25.0% and 34.5% respectively,
which is close to the results of strong LF-MMI TDNN system.

Table 6: TER of the NLM vocabulary expansion.

Method devman (%) devsge (%)
NoLM 26.0 35.8
5-gram KN 25.9 35.6
RNN-LM 25.1 34.6
Proposed NLM 25.0 34.5

6. Conclusion and future work
In this paper we proposed several approaches to improve E2E
based Mandarin-English code-switching speech recognition.
These approaches include data augmentation, byte-pair encod-
ing subword units for English language, language identification
based multitask learning, as well as the vocabulary expansion
for neural language models to rescore the N-best results.

In the future, we plan to study leveraging external mono-
lingual data to improve its performance. we also plan to incor-
porating language model into the existing model to improve its
performance.
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