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Abstract

Speech is a means of communication which relies on both
audio and visual information. The absence of one modal-
ity can often lead to confusion or misinterpretation of in-
formation. In this paper we present an end-to-end tem-
poral model capable of directly synthesising audio from
silent video, without needing to transform to-and-from
intermediate features. Our proposed approach, based
on GANs is capable of producing natural sounding, in-
telligible speech which is synchronised with the video.
The performance of our model is evaluated on the GRID
dataset for both speaker dependent and speaker indepen-
dent scenarios. To the best of our knowledge this is the
first method that maps video directly to raw audio and
the first to produce intelligible speech when tested on
previously unseen speakers. We evaluate the synthesised
audio not only based on the sound quality but also on
the accuracy of the spoken words.

Index Terms: speech synthesis, generative modelling,
visual speech recognition

1 Introduction

[ Lipreading is a technique that involves understanding
speech in the absence of sound, primarily used by peo-
ple who are deaf or hard-of-hearing. Even people with
normal hearing depend on lip movement interpretation,
especially in noisy environments.

The ineffectiveness of audio speech recognition (ASR)
methods in the presence of noise has lead to the research
of automatic visual speech recognition (VSR) methods.
Thanks to recent advances in machine learning VSR, sys-
tems are capable of performing this task with high accu-
racy [1, 2 8L [4] 5]. Most of these systems output text but
there are many applications such as videoconferencing in
noisy or silent environments that would benefit from the
use of video-to-speech systems.

* The first author performed this work during his internship at
Samsung

Figure 1: The speech synthesizer accepts a sequence of
frames and produces the corresponding audio sequence.

One possible approach for developing video to speech
systems is to combine VSR with text-to-speech systems
(TTS), with text serving as an intermediate represen-
tation. However, there are several limitations to using
such systems. Firstly, text-based systems require tran-
scribed datasets for training, which are hard to obtain
because they require laborious manual annotation. Sec-
ondly, generation of the audio can only occur at the end
of each word, which imposes a delay on the pipeline mak-
ing it unsuitable for real-time applications such as video-
conferencing. Finally, the use of text as an intermedi-
ate representation prevents such systems from captur-
ing emotion and intonation, which results in unnatural
speech.

Direct video-to-speech methods do not have these
drawbacks since audio samples can be generated with ev-
ery video frame that is captured. Furthermore, training
of such systems can be done in a self-supervised manner
since most video comes paired with the corresponding au-
dio. For these reasons video-to-speech systems have been
recently considered.

Such video-to-speech systems are proposed by Le
Cornu and Miller in [6] [7], which use Gaussian Mixture
Models and Deep Neural Networks (DNN) respectively
to estimate audio features, which are fed into a vocoder
to produce audio, from visual features. However, the
hand-crafted visual features used in this approach are
not capable of capturing the pitch and intonation of the
speaker and in order to produce intellighle results they
have be artificially generated.



Convolutional neural networks (CNNs) have been
shown to be powerful feature extractors for images and
videos and have replaced handcrafted features in more
recent works. One such system is proposed in [§] to pre-
dict line spectrum pairs (LSPs) from video. The LSPs
are converted into waveforms but since excitation is not
predicted the resulting speech sounds unnatural. This
method is extended in [9] by adding optical flow infor-
mation as input to the network and by adding a post-
processing step, where generated sound features are re-
placed by their closest match from the training set. A
similar method that uses multi-view visual feeds has been
proposed in [I0]. Finally, Akbari et. al. [II] propose
a model that uses CNNs and recurrent neural networks
(RNNs) to transform a video sequence into audio spectro-
grams, which are later transformed into waveforms using
the algorithm proposed in [12].

In this work, we propose an end-to-end model that is
capable of directly converting silent video to raw wave-
form, without the need for any intermediate handcrafted
features as shown in Fig. Our method is based on
generative adversarial networks (GANs), which allows
us to produce high fidelity (50KHz) audio sequences of
realistic intelligible speech. Contrary to the aforemen-
tioned works our model is capable of generating intelli-
gible speech even in the case of unseen speakerﬂ The
generated speech is evaluated using standard audio re-
construction and speech synthesis metrics. Additionally,
we propose using a speech recognition model to verify
the accuracy of the spoken words and a synchronisation
method to quantify the audio-visual synchrony.

2 Video-driven Speech Recon-
struction

The proposed model for speech reconstruction is made
up of 3 sub-networks. The generator network, shown
in Fig. [2|is responsible for transforming the sequence of
video frames into a waveform. During the training phase
the critic network drives the generator to produce wave-
forms that sound similar to natural speech. Finally, a
pretrained speech encoder is used to conserve the speech
content of the waveform.

2.1 Generator

The generator is made up of a content encoder and an
audio frame decoder. The content encoder consists of a
visual feature encoder and an RNN. The visual feature
encoder is a 5 layer 3D CNN responsible for encoding
information about the visual speech which is present in
a window of N consecutive frames. These encodings zg,
which are produced at each time step are fed to a sin-
gle layer gated recurrent unit (GRU) network which pro-
duces a series features z. describing the content of the

1Generated samples online at the following website:
https://sites.google.com/view/speech-synthesis/home

video. The audio frame decoder receives these features as
input and generates the corresponding window of audio
samples. Batch normalization [I3] and ReLU activation
functions are used throughout the entire generator net-
work except for the last layer in the visual feature encoder
and decoder, where the hyperbolic tangent non-linearity
is used without batch normalization.

2.2 Critic

The critic is a 3D CNN which is given audio clips of fixed
length ¢4 from the real and generated samples. During
training the critic learns a 1-Lipschitz function D which
is used to calculate the Wasserstein distance between the
distribution of real and generated waveforms. In order
to enforce the Lipschitz continuity on D the gradients of
critic’s output with respect to the inputs are penalized
if they have a norm larger than 1 [I4]. The penalty is
applied independently to all inputs and therefore batch
normalization should not be used in any layers of the
critic since it introduces correlation between samples of
the batch. The audio clips which are provided as input
to the critic are chosen at random from both the real
and generated audio sequences using a uniform sampling
function S.

2.3 Speech Encoder

The speech encoder network is used to extract speech fea-
tures from the real and generated audio. This network is
taken from the pretrained model proposed in [I5], which
performs speech-driven facial animation. Similarly to our
model this network is trained in a self-supervised man-
ner and learns to produce encodings that capture speech
content that can be used to animate a face. Using this
module we are able to enforce the correct content onto
the generated audio clips through a perceptual loss.

2.4 Training

Our model is based on the Wasserstein GAN proposed
in [14], which minimises the Wasserstein distance be-
tween the real and fake distribution. Since optimis-
ing the Wasserstein distance directly is intractable the
Kantorovich-Rubinstein duality is used to obtain a new
objective [I6]. The adversarial loss of our model is shown
in Equation [I] where D is the critic function, G is the
generator function, x is a sample from the distribution of
real clips P, and ¥ is a sample from the distribution of
generated clips P;. The gradient penalty shown in Equa-
tion [2| is calculated with respect to the input & sampled
from distribution Pz, which contains all linear interpo-
lates between P, and Fy.

Ladv = Eonp, [D(S(2))] — Ezop, [D(S(7))] (1)

Lgp = Eorp, [(IVaD(2)|]2 — 1)%] (2)
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Figure 2: Architecture for the generator network consisting of a content encoder and an audio frame decoder. Con-
volutional layers are represented with Conv blocks with the kernel size depicted as Kijme X Kneight X Kwidain and with
strides for the respective axes appearing in parentheses. The critic accepts as input samples of t; = 1s and determines

whether they come from real or generated audio.

The speech encoder maps a waveform x to a feature
space through a function ¢. During training a perceptual
loss, corresponding to the L; distance between the fea-
tures obtained from mapping real and generated audios
is minimized. This forces the network to learn high-level
features correlated with speech. The perceptual loss is
shown in Equation

Ly = [o(z) — o(2)] ()

An L, reconstruction loss is also used to ensure that the
generated waveform closely matches the original. Finally,
we use a total variation (TV) regularisation factor in our
loss described in Equation 4, where T' is the number of
samples in the audio. This type of regularization penal-
izes non-smooth waveforms and thus reduces the amount

of high frequency noise in the synthesized samples.

1 - -
Lry = T zt: |Te 41 — T4 (4)

The final objective used to obtain the optimal genera-
tor is a combination of the above losses as shown in Equa-
tion[5} The loss factors are weighted so that each loss has
approximately equal contribution. The weights we used
were Ap, = 150, Ay = 120, Agp = 10 and A, = 70.

L= ménmgxﬁadv + >‘L1£L1 + Arv Ly + )\pﬁp + /\gpﬁgp

(5)

When training a Wasserstein GAN the critic should
be trained to optimality [I7]. We therefore perform 6
updates on the critic for every update of the generator.
We use the Adam [I§] optimizer with a learning rate of
0.0001 for both the generator and critic and train until no
improvement is seen on the mel-cepstral distance between
the real and generated audio from the validation set for
10 epochs. We use a window of N = 7 frames as input
for the generator and input a clip of t; = 1s for the critic.

3 Experimental Setup

Our model is implemented in Pytorch and takes approx-
imately 4 days to train on a Nvidia GeForce GTX 1080
Ti GPU. During inference our model is capable of gen-
erating audio for a 3s video recorded at 25 frames per
second (fps) in 60ms when running on a GPU and 6s
when running on the CPU.

3.1 Dataset

The GRID dataset has 33 speakers each uttering 1000
short phrases, containing 6 words taken from a limited
dictionary. The structure of a GRID sentence is described
in Table We evaluate our method in both speaker
dependent and speaker independent settings. Subjects
1, 2, 4 and 29 were used for the subject dependent task
and videos were split into training, validation and test
sets using a random 90%-5%-5% split respectively. This
setup is similar to that used in [I1].

In the subject independent setting the data is divided
into sets based on the subjects. We use 15 subjects for
training, 8 for validation and 10 for testing. We use the

split proposed in [15].

Table 1: Structure of a typical sentence from the GRID
Corpus.

Command  Color Preposition Letter Digit Adverb
bin blue at A-Z 0-9 again
lay green by \{W} now

place red in please
set white with soon

As part of our preprocessing all faces are aligned to
the canonical face using 5 anchor points taken from the
edge of the eyes and the tip of the nose. Video frames
are normalised, resized to 128x96 and cropped keeping
only the bottom half, which contains the mouth. Finally,
data augmentation is performed by mirroring the training
videos.



3.2 Metrics

Evaluation of the generated audio is not a trivial task and
there is no single metric capable of assessing all aspects
of speech such as quality, intelligibility and spoken word
accuracy. For this reason we employ multiple methods
to evaluate the different aspects of our generated sam-
ples. In order to measure the quality of the produced
samples we use the mean mel-cepstral distortion (MCD)
[19], which measures the distance between two signals in
the mel-frequency cepstrum and is commonly used to as-
sess the performance of speech synthesizers. We also use
Short Term Objective Intelligibility (STOI) metric which
measures the intelligibility of the generated audio clip.

Speech quality is measured with the perceptual evalu-
ation of speech quality (PESQ) metric [20]. PESQ was
originally designed to quantify degradation due to codecs
and transmission channel errors. However, this metric is
sensitive to changes in the speaker’s voice, loudness and
listening level [20]. Therefore, although it may not be an
ideal measure for this task we still use it in order to be
consistent with previous works.

In order to determine the synchronisation between the
video and audio we use the pretrained SyncNet model
proposed in [2I]. This model calculates the euclidean dis-
tance between the audio and video encodings for multiple
locations in the sequence and produces the audio-visual
offset (measured in frames) based on the location
of the smallest distance and audio-visual correlation
(confidence) based on the fluctuation of the distance.

Finally, the accuracy of the spoken message is also mea-
sured using the word error rate (WER) as measured by
an ASR system, which is trained on the GRID training
set. On ground truth audio the ASR system achieves 4%
WER.

4 Results

Our proposed model is capable ,of producing intelligible,
high quality speech at high sampling rates such as 50KHz.
We evaluate our model on the subject dependent scenario
and compare it to the Lip2AudSpec model proposed in
[1]. Furthermore we present results when the system is
tested on unseen speakers.

4.1 Speaker Dependent Scenario

Examples of real and generated audio samples are
compared in Fig.[3l In order to present a fair comparison
our audio is sub-sampled to match the rate of the sample
produced by Lip2AudSpec. Through inspection it is no-
ticeable that our model captures more information than
Lip2AudSpec especially for very low and very high fre-
quency content. This results in words being more clearly
articulated when using our model. Our model introduces
artifacts in the form of a low-power persistent hum in the
waveform, which is also visible in the spectral domain.

Table 2: Metrics for the evaluation of the generated audio
waveforms when testing on seen speakers. Best perfor-
mance is shown in bold.

Measure Lip2AudSpec  Proposed Model
PESQ 1.82 1.71
WER 32.5% 26.6%

AV Confidence 3.5 4.4
AV Offset 1 1
STOI 0.446 0.518
MCD 38.14 22.29

Table 3: Ablation study performed in the subject depen-
dent setting. Best performance is shown in bold.

Model PESQ WER AV Conf/Offset STOI =~ MCD
Full 1.71 26.6% 4.4(1) 0.518 22.29
w/o L, 1.45 33.2% 3.9(1) 0.450  26.87
w/o Ly 1.44 31.3 % 3.9(1) 0.483 25,82
w/o Ly 1.14 83.3% 2.0(5) 0.378  30.12

We compare the samples produced by our model to
those produced by Lip2AudSpec using the metrics de-
scribed in section [3.21 The results are shown in Table 2
Our method out-performs Lip2AudSpec in all the intelli-
gibility tests (STOI, WER). Furthermore, our generated
samples achieve better spectral accuracy as indicated by
the smaller MCD. The Lip2AudSpec achieves a better
PESQ score which is likely due to the artifacts that are
created using our model. Indeed, if we apply average
filtering to the signal, which reduces these artifacts the
PESQ increases to 1.80. However, this is done at the ex-
pense of sharpness and intelligibility since STOI drops to
4.7 and the WER increases to 36%. Finally, both meth-
ods have similar scores in audio-visual synchrony, which
is expected since they both use similar architectures to
extract the visual-features.

In order to quantify the effect of each loss term we
perform an ablation study by removing one loss term at
a time. The results of the ablation study are shown in
Table It is clear that removing each term makes the
performance worse and the full models is the best over all
performance measures. We note that the adversarial loss
is necessary for the production of speech and when the
system was evaluated without it generation resulted in
noise. The other important contribution is made from the
perceptual loss, without which the speech produced does
not accurately capture the content of the speech. This
is evident from the large increase in the WER, although
this is reflected in the other metrics as well.

4.2 Speaker Independent Scenario

We present the results of our model on unseen speakers in
Table [d Comparison with other methods is not possible
for this setup since other methods are speaker depen-
dent (training the Lip2AudSpec model on the same data
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Figure 3: Examples of real and generated waveforms and their corresponding spectrograms

Table 4: Metrics for the evaluation of the generated audio
waveforms when testing on unseen speakers

PESQ WER AV Confidence AV Offset STOI MCD

1.24 40.5 % 4.1 1 0.445  24.29

did not produce intelligible results). From the results is
evident that the speaker independent setting is a more
complex problem. One of the reasons for this is the fact
that the model can not learn the voice of unseen speak-
ers. This results in generating a voice that does not cor-
respond to the real speaker (i.e. female voice for a male
speaker). Furthermore, in certain cases the voice will
morph during the phrase. These factors likely account
in large part for the drop in the PESQ metric, which is
sensitive to such alterations. Morphing voices likely also
affects the intelligibility of the audio clip, which is re-
flected in the WER, STOI and MCD. Finally we notice a
slight improvement in audio visual synchrony which may
be due to the increased number of samples seen during
training.

It is important to note that the model has a different
performance for each unseen subject. The WER fluctu-
ates from 40% to 60% depending on the speaker. This
is to be expected especially for subjects whose appear-
ance differs greatly from the subjects in the training set.
Additionally, since GRID is made up mostly of native
speakers of English we notice that unseen subjects who
are non-native speakers have worse WER.

5 Conclusions

In this work we have presented an end-to-end model that
reconstructs speech from silent video and evaluated in
two different scenarios. Our model is capable of generat-
ing intelligible audio for both seen and unseen speakers.
Future research should focus on producing more natural
and coherent voices for unseen speakers as well as im-

proving intelligibility. Furthermore, we believe that such
systems are capable of reflecting the speakers emotion
and should be tested on expressive datasets. Finally, a
major limitation of this method is the fact that it oper-
ates solely on frontal faces. Therefore the natural pro-
gression of this work will be to reconstruct speech from
videos taken in the wild.
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