
ar
X

iv
:1

90
4.

03
24

0v
2

 [
cs

.C
L

]
 1

9
Ju

n
20

19

An Unsupervised Autoregressive Model for Speech Representation Learning

Yu-An Chung, Wei-Ning Hsu, Hao Tang, James Glass

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA 02139, USA
{andyyuan,wnhsu,haotang,glass}@mit.edu

Abstract

This paper proposes a novel unsupervised autoregressive neural

model for learning generic speech representations. In contrast

to other speech representation learning methods that aim to re-

move noise or speaker variabilities, ours is designed to preserve

information for a wide range of downstream tasks. In addi-

tion, the proposed model does not require any phonetic or word

boundary labels, allowing the model to benefit from large quan-

tities of unlabeled data. Speech representations learned by our

model significantly improve performance on both phone clas-

sification and speaker verification over the surface features and

other supervised and unsupervised approaches. Further analysis

shows that different levels of speech information are captured

by our model at different layers. In particular, the lower lay-

ers tend to be more discriminative for speakers, while the upper

layers provide more phonetic content.

Index Terms: speech representation learning, unsupervised

learning

1. Introduction

Speech signals encompass a rich set of acoustic and linguis-

tic properties, ranging from the individual lexical units, such

as phonemes and words, to the characteristics of the speakers,

their intent, or even their mental status. However, these high-

level properties of speech are poorly captured by the surface

features, such as the amplitudes of a wave signal, log Mel spec-

trograms, or Mel frequency cepstral coefficients. The goal of

speech representation learning is to find a transformation from

the surface features that makes high-level properties of speech

more accessible to downstream tasks.

In this work, we propose an autoregressive model for learn-

ing speech representations that can be transferred to different

tasks across different datasets. Our model is able to retain much

information from the surface features, allowing a wide range of

tasks across different datasets to benefit from the learned repre-

sentations, while also being unsupervised and able to leverage

large quantities of unlabeled data. As a first step, we focus on

learning general speech representations from log Mel spectro-

grams, but it is straightforward to extend our approach to the

amplitudes of the wave signals.

We use linear separability (or separability with a shallow

network) to define the accessibility of information for the down-

stream tasks. Others [1] have argued that there are many nui-

sance factors that might affect the performance of linear classi-

fiers, and have proposed to use a contrastive loss for evaluation.

However, there has been evidence [2] and theories [3] support-

ing the idea that low contrastive loss implies the existence of a

linear classifier with low error. In other words, we aim to learn

speech representations that allow linear classifiers to perform

well on many downstream tasks.

When the downstream tasks are known, supervised learn-

ing, specifically multitask learning [4], is the most successful

approach for learning specialized representations of those par-

ticular tasks. In general, however, when a transformation is

trained against a certain set of tasks, information independent

of the tasks (such as noise or speaker variability, depending on

the tasks) tends to be discarded after training [5]. We risk dis-

carding useful information for other unseen tasks when learning

representations in a supervised fashion. Instead of having tar-

geted tasks in advance, we focus on learning representations

for a wide range of, potentially unknown, tasks. Due to the

required generality, it is necessary to retain in the representa-

tions as much information about the original signal as possible.

Two commonly used loss functions, i.e., the autoencoding and

autoregressive loss functions, satisfy this criterion. However,

when no additional constraints are imposed, there is a trivial

solution, the identity mapping, for the autoencoding loss func-

tion. This makes the autoregressive loss more appealing, be-

cause no additional techniques, such as denoising [6], are re-

quired to avoid the trivial solution as for the autoencoding loss.

The autoregressive approach also does not require other types of

linguistic constraints, such as phonetic or word boundaries [7].

The autoregressive loss belongs to a large family of self-

supervised loss functions [8, 9, 10]. There also exists some

work on unsupervised speech representation learning [11, 12,

13, 14, 15, 16]. However, none of the studies are able to show

the transferability of the learned representations across differ-

ent datasets. Our work is largely motivated by the recent suc-

cess in transfer learning from large-scale pre-trained language

models [17, 18, 19, 20], and we aim to learn general speech

representations that can be transferred to different tasks across

different datasets.

2. Models

We propose a novel autoregressive architecture, which we

call Autoregressive Predictive Coding (APC), for unsupervised

speech representation learning. Predictive coding on wave sam-

ples [21] has a long and influential history in speech processing,

and its recent neural version [22] and variants, such as Con-

trastive Predictive Coding (CPC) [23], have also been used to

learn speech representation [11]. In contrast to these studies,

our work mainly focus on predicting the spectrum of a future

frame rather than a wave sample. We will briefly review CPC

here and compare extensively with it in Section 3.

2.1. Autoregressive Predictive Coding

The methodology of the proposed APC model is largely in-

spired by language models (LMs) for text, which are typ-

ically a probability distribution over sequences of N to-

kens (t1, t2, ..., tN). Given such a sequence, an LM assigns a

http://arxiv.org/abs/1904.03240v2

probability P (t1, t2, ..., tN) to the whole sequence by modeling

the probability of token tk given the history (t1, t2, ..., tk−1):

P (t1, t2, ..., tN) =

N
∏

k=1

P (tk | t1, t2, ..., tk−1). (1)

It is trained by minimizing the negative log-likelihood:

N
∑

k=1

− logP (t1, t2, ..., tk−1; θt, θrnn, θs), (2)

where the parameters to be optimized are θt, θrnn, and θs. θt is

a look-up table that maps each token into a vector of fixed di-

mensionality. θrnn is a Recurrent Neural Network (RNN) used

to summarize the sequence history up to the current time step.

θs is a Softmax layer appended at the output of each RNN time

step for estimating probability distribution over the tokens. Lan-

guage modeling is a general task that requires the understanding

of many aspects in language in order to perform well.

Following most of the neural LMs in the literature, we use

an RNN [24] for modeling the temporal information within an

acoustic sequence. For speech data, each token tk corresponds

to a frame rather than a word or character token, hence we do

not need the look-up table θt as we do in LMs and directly feed

each frame into the RNN θrnn. Since there does not exist a finite

set of target tokens (such as the vocabulary set as in text), we

choose to replace the Softmax layer with a regression layer θr .

In other words, the RNN output at each time step attempts to

directly fit the target frame with a linear mapping. The learnable

parameters in APCs are θrnn and θr .

Given the history (t1, t2, ..., tk−1), an LM aims to max-

imize the probability of the next token to be the tk in the

data. However, for APCs, exploiting the local smoothness of

the speech signal might be sufficient to predict the next frame.

To encourage APCs to infer more global structures rather than

the local information in the signals, we ask the model to pre-

dict a frame n steps ahead of the current one. In other words,

given an utterance represented as a sequence of acoustic feature

vectors (x1, x2, ..., xT), the RNN processes each sequence el-

ement xt one at a time and outputs a prediction yt, where xt

and yt have the same dimensionality. The model is optimized

by minimizing the L1 loss (as is done when predicting spec-

tral frames in some speech synthesis models [25, 26].) be-

tween the input sequence (x1, x2, ..., xT) and the predicted se-

quence (y1, y2, ..., yT):

T−n
∑

i=1

|xi+n − yi|. (3)

2.2. Contrastive Predictive Coding

Instead of learning to predict future frames like APCs, Con-

trastive Predictive Coding (CPC) [23] aims to learn represen-

tations that separates the target future frame xi+n and ran-

domly sampled negative frames {x̃}, given a context hi =
(x1, x2, ..., xi).

Specifically, CPC consists of three modules: a frame en-

coder Efrm, a uni-directional RNN Ectx, and a scoring func-

tion f . A sequence of frames is first encoded to a sequence

of frame representations zi = Efrm(xi) using the frame en-

coder. The encoded sequence is then passed to the recurrent

context encoder to obtain a sequence of context representa-

tions (c1, c2, ..., cT), where ci is a fixed-dimensional represen-

tation computed from Ectx(z1, z2, ..., zi). The scoring function

assigns a positive scalar to a pair of frame and context, formu-

lated as f(x, h) = exp
(

zTWc
)

, where z is the frame repre-

sentation of x, and c is the context representation of h.

Suppose the target frame is n steps away. Given a con-

text hi, the target future frame xi+n, and a collection of neg-

ative frames X̃ , CPC jointly optimizes the three modules by

minimizing a contrastive loss:

Ln(hi, xi+n, X̃) = log
f(xi+n, hi)

∑

x∈X̃∪{xi+n} f(x, hi)
. (4)

As shown in [23], minimizing this loss will result in f(x, h) es-

timating the density ratio pn(x | h)/q(x), where pn denotes the

conditional distribution of x at n steps ahead of the given con-

text h, and q is the proposal distribution where negative samples

are drawn from. In other words, the choice of the number of

steps ahead and the proposal distribution would both affect the

estimated target density ratio, and therefore would change what

is learned in the representations z and c. For example, using

a proposal distribution that draws samples from the same se-

quence as the target frame would encourage the model to learn

the phonetic content but not the speaker information, because

the latter do not help distinguishing a target frame from nega-

tive ones. We will study such differences in our experiments.

Both CPC and the proposed APCs consider the sequen-

tial structures of speech, and predict information about future

frames. However, the two models differ significantly in the type

of information the corresponding loss function enforces them to

capture. While CPC representations are encouraged to focus on

information that is most discriminative between the target and

negative frames, APCs have to encode information sufficient

for predicting the target frame, and are allowed to only discard

information that is common across the train dataset.

3. Experiments

In this section, we empirically demonstrate the effectiveness

of the learned representations from the proposed APC model.

Since phone and speaker information are two of the most impor-

tant characteristics that differentiate one speech utterance from

another, we choose to use phone classification and speaker ver-

ification to examine how much phone and speaker information

are captured by the representations.

3.1. Datasets

We use the LibriSpeech corpus [27] for training the feature ex-

tractors (all APC and CPC models). Specifically, the 360-hour

subset, which contains 921 speakers in total, is used. We use

80-dimensional log Mel spectrograms (normalized to zero mean

and unit variance per speaker) as input features.

An ideal feature extractor should extract representations

that generalize to datasets of different domains. To examine the

robustness to shift in domains, rather than on the LibriSpeech

test set, we conduct phone classification and speaker verifica-

tion on the Wall Street Journal (WSJ) [28] and TIMIT cor-

pora. For phone classification, we follow the standard split of

WSJ, use 90% of si284 for training, use the rest of the 10%

for development, and report numbers on dev93. The phone

alignments are generated with a speaker adapted GMM-HMM

model. For speaker verification, we follow the standard split of

TIMIT, use the training set for training the universal background

model, the i-vector extractor [29], a linear discriminant analy-

sis (LDA) model. We follow the standard practice of speaker

verification and only consider female-female and male-male

pairs in the 50-speaker development set. We note that speaker

verification on TIMIT is not common, and we mainly use it to

check if the representations contain speaker information.

3.2. Implementations

We model our APCs with a multi-layer unidirectional

LSTM [30] network with residual connections [31] between

two consecutive layers as is done in [32], and the dimensionality

of each layer is 512. For CPC, we follow the implementation for

the context encoder and the scoring function in [23], but change

the acoustic feature x from a window of 400 samples (25ms) to

a 80-dimensional vector of Mel spectra computed from that seg-

ment, and replace the 5-layer strided Convolutional Neural Net-

work with a 3-layer, 512-dim fully-connected neural network

with ReLU activations for the frame encoder. Such modifica-

tion aims for a fairer comparison between APC and CPC mod-

els in terms of their training objectives, while eliminating the

source of variation due to the choice of acoustic features. All

APC and CPC models (except cpc-ctx-exhaust, which we

will describe more below) are trained for 100 epochs using the

Adam optimizer [33] with a batch size of 32 and an initial learn-

ing rate of 10−3.

Note that the proposed approach is unsupervised, and we do

not and should not tune hyperparameters according to the down-

stream tasks. The goal of hyperparameter tuning is to show how

the hyperparameters affect what is learned in the speech repre-

sentations. Recall that we define the accessibility of categorical

information as the linear separability among classes. For phone

classification, we simply use a linear classifier to predict the

phoneme classes for each frame. The frame error rates indicate

how much phonetic content is contained in the speech repre-

sentations. Similarly, for speaker verification, we train an LDA

model on top of the speech representations.

3.3. Phone Classification

Table 1 compares APCs with a series of CPC models that use

different training variants. Phone error rates (PER) are reported,

and each of the first four rows corresponds to a CPC variant.

We use cpc-n9all to denote a CPC model that draws 9 neg-

ative samples from utterances within the same minibatch, and

cpc-n9same to denote a CPC model that draws 9 negative

samples from the same utterance. For both cpc-n9all and

cpc-n9same, we take the outputs of the frame encoder (i.e.,

the outputs of the 3-layer fully-connected neural networks) as

the extracted features and feed them to the linear classifier.

The training approach of cpc-ctx-n9same is the same as

cpc-n9same, except that the RNN outputs are taken as the ex-

tracted features instead of the frame encoder outputs. We use

ctx, short for context, to indicate such difference. The final

CPC variant we try is cpc-ctx-exhaust, which follows the

exact same training procedure in [23] that combines contrastive

losses for all steps k ≤ n with equal weights for training (i.e.,
∑n

k=1
Ln), uses all non-target samples in a minibatch as nega-

tive samples, and are trained with mini-batches of 8 utterances

that are randomly chuncked to 128 frames each. For APCs, the

outputs of the last RNN layer are taken as the extracted features.

All models in Table 1 consist of one RNN layer, and the effect

of predicting different time steps ahead is also investigated.

A comparison of models from the CPC-family. From Ta-

ble 1, we observe that cpc-n9same outperforms cpc-n9all

across all time steps we try. This is an expected outcome, since

for cpc-n9all, the negative samples are drawn from differ-

Table 1: Comparing APCs with a series of CPC models on

phone classification. PERs are reported.

Method
#(step)

2 5 10 20

cpc-n9all 51.3 48.8 50.8 54.6

cpc-n9same 47.5 48.2 50.0 53.0

cpc-ctx-n9same 42.1 46.1 48.8 53.8

cpc-ctx-exhaust 42.9 43.1 45.6 49.1

apc (proposed) 36.5 35.6 35.4 37.7

ent utterances within a minibatch that could possibly be ut-

tered by different speakers, and thus cpc-n9all is not required

to really capture phonetic content to differentiate the positive

and negative samples. In contrast, cpc-n9same draws nega-

tive samples from the same utterance, and in such case, speaker

information is identical for each sample and cpc-n9same is

forced to learn other non-trivial features such as phone infor-

mation so as to differentiate positive and negative samples. In

addition, we find that representations extracted from RNN con-

tain more phonetic content than those extracted from the frame

encoder, as cpc-ctx-n9same often outperforms cpc-n9same

especially when the number of steps to the target is small. By

using all non-target samples as negative samples from the mini-

batch, cpc-ctx-exhaust further lowers the PER, suggesting

that richer phonetic content is learned in the representations.

Comparing CPC with APC. Our APCs, as shown in the last

row in Table 1, significantly outperform all CPC models in

spite of its much simpler architecture and training approach.

These results demonstrate that more phonetic content is imme-

diately accessible from a linear classifier in the representations

extracted by APCs compared to CPC models.

There are other aspects of APCs worth investigating. In Ta-

ble 2, we present the phone classification results of using deeper

RNNs for APCs and with more target time steps. For all APC

models, we take the outputs of the last RNN layer as the ex-

tracted features. Three supervised baselines, a linear classifier,

a 1-layer multi-layer perceptron (MLP), and a 3-layer MLP, are

implemented, taking the surface features, i.e., spectrograms, as

input features. For MLPs, each layer consist of 512 units with

ReLU activations. These three baselines are meant to help us

understand how accessible the phonetic content is from the sur-

face features, even under some amount of nonlinear transfor-

mations. We also include the best number of CPC models from

Table 1 to bridge the two tables.

Surface features with non-linear phone classifier. From Ta-

ble 2, we observe that incorporating non-linearity in the phone

classifier does improve PER1. When using a 3-layer MLP as the

classifier, the surface features are transformed into higher-level

representations that are more linearly separable than the best

CPC features. However, we can see there is still a significant

gap between the transformed spectrogram representations with

features extracted by APC models.

A comparison of APC models. Overall, we find that deeper

APC models produce better representations especially for small

#(steps). There also exists a sweet spot when we vary the

amount of time steps to the target for APC models to predict—

1The best performing supervised 3-layer LSTM with minimal looka-
head on this particular task can achieve 16.3 [34].

Table 2: PERs on phone classification. All features are fed to a

linear classifier unless otherwise stated. The number of steps to

the target #(steps) is not relevant in the first four rows.

Method
#(step)

1 2 3 5 10 20

Mel 50.0

Mel + MLP-1 43.4

Mel + MLP-3 41.3

cpc best 42.1

apc 1-layer 39.4 36.5 35.4 35.6 35.4 37.7

apc 2-layer 38.5 34.6 35.9 35.7 34.6 38.8

apc 3-layer 37.2 36.7 33.5 36.1 37.1 38.8

apc 4-layer 36.2 34.4 34.5 35.3 36.9 39.6

the PER continues to drop as we increase #(steps) until a cer-

tain point, which is usually when #(steps) equals 3; after that

the PER begins to increase as #(steps) increases.

3.4. Speaker Verification

For speaker verification, we compare APCs with the i-vector

representation. We train a GMM with 256 components as the

universal background model on the TIMIT training set. We then

extract 100-dimensional i-vectors and project them down to 24

dimensions with LDA trained on the training set. The cosine

similarity is used for evaluation. We also include the best results

from all CPC models. The equal error rates (EER) on speaker

verification are presented in Table 3. Same as what we do in the

phone classification experiments, the outputs of the last RNN

layer are taken as the extracted representations. The represen-

tation of the entire utterance is a simple average of the frame

representations. For the last two rows , i.e., apc 3-layer-1 and

apc 3-layer-2, it means that we take the outputs of the first and

the second RNN layer as the extracted representations. We ex-

plain our motivation of doing so below.

Table 3: EER on speaker verification. The number of steps to

the target #(steps) is not relevant for the first two rows.

Method
#(step)

1 2 3 5 10 20

i-vector 6.64

cpc best 5.00

apc 1-layer 4.71 4.07 4.14 4.14 5.14 5.29

apc 2-layer 4.71 4.64 5.71 4.86 5.57 6.07

apc 3-layer 5.21 4.93 4.43 4.57 5.79 6.21

apc 3-layer-1 3.43 3.86 3.79 3.86 4.07 4.86

apc 3-layer-2 3.79 4.64 4.14 4.29 5.14 5.00

Comparing APC with i-vector and CPC. From Table 3,

we can see that the best CPC model outperforms the i-vector

baseline, and APCs further outperform CPC when #(steps) is

smaller than 10. This demonstrates that representations learned

by APCs contain not only phonetic information but also speaker

information.

Speaker information across different APC layers. Unlike

phone classification, where we find increasing the depth of

APCs improve PER, deeper APCs somehow performs worse

in speaker verification. Studies have shown that in a deep LM,

lower layers tend to focus more on local syntax, while the upper

layers usually induce more semantic content [35]. Motivated by

the fact that LMs for text could exhibit different kinds of infor-

mation across different layers, we are interested in investigating

whether other layers besides the last one contain more infor-

mation of our interest, that is, the speaker information. Specif-

ically, instead of taking the outputs of the last RNN layer of

apc 3-layer, we try using the outputs of the first and second

RNN layers of it to perform speaker verification, denoted by

apc 3-layer-1 and apc 3-layer-2 in Table 3, respectively. Surpris-

ingly, for all #(steps), we see that apc 3-layer-1 consistently out-

performs apc 3-layer-2, which further outperforms apc 3-layer.

This indicates that lower layers indeed contain more speaker in-

formation than higher layers, or at least the speaker information

is represented in a more accessible form in lower layers. Addi-

tionally, we observe that apc 3-layer-1 outperforms apc 1-layer

and apc 3-layer-2 outperforms apc 2-layer although the repre-

sentations are extracted from the same RNN depth. Combining

all of our observations from both tasks, we conclude that a deep

APC is a very powerful speech feature extractor, whose higher

layers capture phonetic information while more speaker infor-

mation resides in its lower layers.

4. Discussions

We propose Autoregressive Predictive Coding (APC) for unsu-

pervised speech representation learning. The backbone of APC

is a deep LSTM network, and the model is trained in an autore-

gressive fashion. We introduce a time shifting factor that asks

the model to predict further steps ahead of the current frame dur-

ing training in order to encourage it to discover more general

structures rather than the local ones within the speech signal.

Our experimental results show that the number of steps to the

target frame controls what is learned in the representation. How

this hyperparameter is set depends on how the representation is

going to be used and can be thought of as a prior.

Transfer learning from large-scale pre-trained LMs has

shown great success recently, and we believe it is promising and

useful to develop similar transfer learning techniques for the do-

main of speech and audio. APC proposed in this work is our

first step towards this goal. Despite its simplicity, APCs have

demonstrated a strong capability of extracting useful phone and

speaker information through our experiments. In the future, we

are interested in training APCs on larger and probably nois-

ier corpora and testing the extracted features on other speech-

related tasks. Furthermore, in this work we only take outputs

from a specific layer from APC models as input features for

a downstream task. However, as indicated in our experimen-

tal results that different layers may focus on capturing differ-

ent aspects of speech information (e.g., lower layers are shown

to contain richer speaker information than the upper layers), it

is potentially beneficial to combine all internal representations

across different layers and simultaneously expose all of them

to a downstream model. This allows the model to select which

the combination (e.g., through a set of learnable weights as in

done in ELMo [17]) of all representations most useful for an

end task. From the point of view of model interpretability, it is

also important to analyze how the internal representations in a

deep APC are transformed across layers from capturing speaker

information to capturing phonetic information.

5. References

[1] T. Schatz, V. Peddinti, F. Bach, A. Jansen, H. Hermansky, and
E. Dupoux, “Evaluating speech features with the minimal-pair
ABX task: Analysis of the classical MFC/PLP pipeline,” in IN-

TERSPEECH, 2013.

[2] S. Settle and K. Livescu, “Discriminative acoustic word embed-
dings: recurrent neural network-based approaches,” in SLT, 2016.

[3] S. Arora, H. Khandeparkar, M. Khodak, O. Plevrakis, and
N. Saunshi, “A theoretical analysis of contrastive unsupervised
representation learning,” arXiv preprint arXiv:1902.09229, 2019.

[4] R. Caruana, “Multitask learning,” Machine Learning, vol. 28,
no. 1, pp. 41–75, 1997.

[5] N. Tishby, F. Pereira, and W. Bialek, “The information bottleneck
method,” arXiv preprint arXiv:physics/0004057, 1999.

[6] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Man-
zagol, “Stacked denoising autoencoders: Learning useful repre-
sentations in a deep network with a local denoising criterion,”
Journal of Machine Learning Research, vol. 11, no. Dec, pp.
3371–3408, 2010.

[7] H. Kamper, W. Wang, and K. Livescu, “Deep convolutional
acoustic word embeddings using word-pair side information,” in
ICASSP, 2016.

[8] X. Wang and A. Gupta, “Unsupervised learning of visual repre-
sentations using videos,” in ICCV, 2015.

[9] C. Doersch, A. Gupta, and A. Efros, “Unsupervised visual repre-
sentation learning by context prediction,” in ICCV, 2015.

[10] G. Larsson, M. Maire, and G. Shakhnarovich, “Colorization as a
proxy task for visual understanding,” in CVPR, 2017.

[11] J. Chorowski, R. Weiss, S. Bengio, and A. v. d. Oord, “Unsu-
pervised speech representation learning using wavenet autoen-
coders,” arXiv preprint arXiv:1901.08810, 2019.

[12] Y.-A. Chung and J. Glass, “Speech2vec: A sequence-to-sequence
framework for learning word embeddings from speech,” in IN-

TERSPEECH, 2018.

[13] B. Milde and C. Biemann, “Unspeech: Unsupervised speech con-
text embeddings,” in INTERSPEECH, 2018.

[14] W.-N. Hsu, Y. Zhang, and J. Glass, “Unsupervised learning of dis-
entangled and interpretable representations from sequential data,”
in NIPS, 2017.

[15] ——, “Learning latent representations for speech generation and
transformation,” in INTERSPEECH, 2017.

[16] Y.-A. Chung, C.-C. Wu, C.-H. Shen, H.-Y. Lee, and L.-S. Lee,
“Audio word2vec: Unsupervised learning of audio segment rep-
resentations using sequence-to-sequence autoencoder,” in INTER-

SPEECH, 2016.

[17] M. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
and L. Zettlemoyer, “Deep contextualized word representations,”
in NAACL-HLT, 2018.

[18] J. Howard and S. Ruder, “Universal language model fine-tuning
for text classification,” in ACL, 2018.

[19] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Im-
proving language understanding by generative pre-training,” Ope-
nAI, Tech. Rep., 2018.

[20] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language under-
standing,” arXiv preprint arXiv:1810.04805, 2018.

[21] M. Schroeder and B. Atal, “Code-excided linear prediction
(CELP): high-quality speech at very low bit rates,” in ICASSP,
1985.

[22] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu,
“WaveNet: a generative model for raw audio,” arXiv preprint

arXiv:1609.03499, 2016.

[23] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with
contrastive predictive coding,” arXiv preprint arXiv:1807.03748,
2018.

[24] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khudan-
pur, “Recurrent neural network based language model,” in INTER-

SPEECH, 2010.

[25] Y. Wang, R. Skerry-Ryan, D. Stanton, Y. Wu, R. Weiss, N. Jaitly,
Z. Yang, Y. Xiao, Z. Chen, S. Bengio, Q. Le, Y. Agiomyrgian-
nakis, R. Clark, and R. Saurous, “Tacotron: Towards end-to-end
speech synthesis,” in INTERSPEECH, 2017.

[26] Y.-A. Chung, Y. Wang, W.-N. Hsu, Y. Zhang, and R. Skerry-Ryan,
“Semi-supervised training for improving data efficiency in end-to-
end speech synthesis,” in ICASSP, 2019.

[27] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: an asr corpus based on public domain audio books,”
in ICASSP, 2015.

[28] D. Paul and J. Baker, “The design for the wall street journal-based
csr corpus,” in Workshop on Speech and Natural Language, 1992.

[29] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet,
“Front-end factor analysis for speaker verification,” IEEE Trans-

actions on Audio, Speech, and Language Processing, vol. 19,
no. 4, pp. 788–798, 2011.

[30] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[31] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in CVPR, 2016.

[32] Y. Wu, M. Schuster, Z. Chen, Q. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah,
M. Johnson, X. Liu, . Kaiser, S. Gouws, Y. Kato, T. Kudo,
H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young,
J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. Corrado,
M. Hughes, and J. Dean, “Google’s neural machine translation
system: Bridging the gap between human and machine transla-
tion,” arXiv preprint arXiv:1609.08144, 2016.

[33] D. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in ICLR, 2015.

[34] H. Tang and J. Glass, “On training recurrent networks with trun-
cated backpropagation through time in speech recognition,” in
SLT, 2019.

[35] M. Peters, M. Neumann, L. Zettlemoyer, and W.-t. Yih, “Dis-
secting contextual word embeddings: Architecture and represen-
tation,” in EMNLP, 2018.

	1 Introduction
	2 Models
	2.1 Autoregressive Predictive Coding
	2.2 Contrastive Predictive Coding

	3 Experiments
	3.1 Datasets
	3.2 Implementations
	3.3 Phone Classification
	3.4 Speaker Verification

	4 Discussions
	5 References

