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Abstract

This paper presents a method of using autoregressive neural
networks for the acoustic modeling of singing voice synthesis
(SVS). Singing voice differs from speech and it contains more
local dynamic movements of acoustic features, e.g., vibratos.
Therefore, our method adopts deep autoregressive (DAR) mod-
els to predict the F0 and spectral features of singing voice in
order to better describe the dependencies among the acoustic
features of consecutive frames. For F0 modeling, discretized
F0 values are used and the influences of the history length
in DAR are analyzed by experiments. An F0 post-processing
strategy is also designed to alleviate the inconsistency between
the predicted F0 contours and the F0 values determined by
music notes. Furthermore, we extend the DAR model to deal
with continuous spectral features, and a prenet module with
self-attention layers is introduced to process historical frames.
Experiments on a Chinese singing voice corpus demonstrate
that our method using DARs can produce F0 contours with
vibratos effectively, and can achieve better objective and subjec-
tive performance than the conventional method using recurrent
neural networks (RNNs).
Index Terms: singing voice synthesis, deep autoregressive
model, self-attention, recurrent neural network

1. Introduction
Singing voice synthesis (SVS) converts lyrics and musical score
information (e.g., tempo, pitch, etc.) into songs, which differs
from traditional text-to-speech (TTS) synthesis. Some song
synthesizers have been developed based on the unit selection
speech synthesis approach [1, 2]. Although this approach
can achieve high sound quality, it relies on large corpora
and its flexibility is limited. On the other hand, a statistical
parametric approach to SVS based on hidden Markov models
(HMMs) [3] has also been studied. However, this method can’t
generate singing voice with high naturalness because of the
over-smoothing issue of HMM modeling.

Recently, various neural networks, such as deep neural net-
work (DNN) [4] and recurrent neural network with long-short
term memory (LSTM-RNN) [5], have been applied to speech
synthesis and demonstrated their superiority over traditional
HMM-based ones. Some new neural models, such as Tacotron
[6], WaveNet [7] and WaveRNN [8], have also been proposed
to improve the acoustic modeling and waveform generation of
statistical parametric speech synthesis. For SVS, DNN and
LSTM-RNN have been adopted for acoustic modeling [9, 10].
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A neural network model similar to WaveNet has also been
proposed for modeling spectral features in SVS [11].

The differences between singing voice and common speech
should be considered when designing SVS methods. First,
there are plenty of linguistic-independent dynamic movements
of acoustic features in singing voice. For example, the F0
contours of singing voice contain a lot of singingness-related
dynamic F0 patterns, such as vibrato, overshoot, preparation,
and fine-fluctuation [12].

The spectral features of singing voice are also affected
by these kinds of F0 movements. However, it is difficult to
model these local dynamic characteristics of acoustic features
using conventional DNNs or LSTM-RNNs directly. Second, the
predicted F0 contours should be consistent with the input music
notes, which can not be guaranteed by state-of-the-art acoustic
models for SVS. The synthetic voice may be perceived as out
of tune if the predicted F0 contours deviate too much from the
pitch determined by music notes.

Therefore, this paper proposes to adopt deep autoregressive
(DAR) [13] models for predicting the F0 and spectral features
of singing voice in order to better describe the dependencies
among the acoustic features of consecutive frames. For F0
modeling, discretized F0 values are used and the influences
of the history length in DAR are analyzed by experiments.
An F0 post-processing strategy is also designed to alleviate
the inconsistency between the predicted F0 contours and the
stair-like F0 contours determined by music notes. For spectral
modeling, the original DAR model is extended to deal with
continuous spectral features, and a prenet module with self-
attention [14] layers is introduced to process historical frames.
Finally, a WaveRNN vocoder [8] is built to synthesize the
waveforms of singing voice from the predicted F0 and spectral
features. Experiments on a Chinese singing voice corpus
show that our method using DARs can produce F0 contours
with vibratos effectively, and can achieves better objective and
subjective performance than RNN-based acoustic modeling.

This paper is organized as follows. In Section 2, we briefly
review the basic DAR model and describe the details of our
proposed method. Section 3 reports our experimental results.
Conclusions are given in Section 4.

2. DAR-based Singing Voice Synthesis
2.1. Basic DAR models

The autoregressive (AR) dependency has been widely studied
for many signal modeling and generation tasks. Deep autore-
gressive (DAR) models [13] follow the idea of feeding the target
data of previous frames as additional input to a uni-directional
recurrent layer [15]. Assume that ot stands for the model output
at the t-th frame. At the t-th time step of a DAR model,
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Figure 1: The structure of our DAR-based F0 model for SVS.

the sequence of K history outputs, i.e., [ot−k, ...,ot−1], are
concatenated, and are sent into the recurrent unit together with
the hidden representations of the (t − 1)-th time step. The
feedback path of history outputs is referred to as feedback link
in this paper.

The DAR model for speech synthesis was initially proposed
for modeling the sequences of quantized F0 values [13]. The
F0 quantization is achieved by first mapping each original F0
into Mel scale and then quantizing it into N levels. Thus, the
F0 output at each frame can be encoded into a one-hot vector
ot = [ot,0, ot,1, . . . , ot,N ]>, where ot,i ∈ {0, 1}. For unvoiced
frames, we have ot,0 = 1. At the training stage, H-softmax
(hierarchical softmax) [16] is adopted as the final output layer
to handle the unbalanced data distribution caused by the large
amount of unvoiced frames. A data dropout strategy is designed
to alleviate the issue that the DAR may only copy the feedback
link while ignore the input features at current frame. At the
generation stage, the t-th frame is classified as an unvoiced one
if ot,0 ≥ 0.5. Otherwise, this frame is determined as a voiced
one and its F0 quantization level is predicted.

2.2. DAR-based F0 model for SVS

The structure of our DAR-based F0 model for SVS is shown
in Figure 1. It is almost the same as the original DAR for F0
modeling [13] and one difference is that GRU instead of LSTM
is adopted at recurrent layers for simplification. The frame-level
context features xt, which contain both linguistic and music
score information, is first passed through fully connected (FC)
layers. Then, the DAR module consists of a bidirectional GRU
layer followed by a unidirectional GRU layer with data dropout
strategy. The K history outputs of quantized F0 values are first
passed through an embedding layer. The embedding vectors
are then concatenated and fed into the unidirectional GRU layer
as additional inputs. At the generation stage, the F0 values of
voiced frames are predicted by mean-based generation [13] in
our method.

In order to reduce the deviation between the predicted
F0 contours and the pitch determined by music notes, and to
alleviate the out-of-tune issue in synthetic voice, an F0 post-
processing strategy is proposed in this paper. This strategy is
achieved by performing a moving average on the F0 contours
predicted by models and replacing the slow-change components
with melody components [17], i.e., the stair-like F0 contours
determined by music notes. Mathematically, let ft denote the
predicted F0 value at the t-th frame after dequantizaiton. The
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Figure 2: The structure of our DAR-based spectral model for
SVS.

post-processed F0 value f̂t can be calculated as

f̃t =
1

2w + 1

t+w∑
i=t−w

fi, (1)

f̂t = ft − f̃t + f
(n)
t , (2)

where 2w+1 represents the window size for moving average, f̃t
denotes the output of moving average and and f

(n)
t represents

the t-th frame of the stair-like F0 contours determined by music
notes. The above operations are performed independently for
each voiced segment. The first and last frames in each voiced
segment are copied w times to provide data for calculating
moving average and the beginning and the end of the segment.

2.3. DAR-based spectral model for SVS

In contrast to our DAR-based F0 model, continuous spectral
features, i.e., mel-spectral coefficients (MCCs) and energy,
are modelled directly in our DAR-based spectral model. As
depicted in Figure 2, the most significant difference to Figure 1
is that a prenet module is designed to process the history outputs
of continuous spectral features. In our preliminary experiments,
we found that directly feeding the history spectral features into
the DAR module didn’t work well. One possible reason is
the significant difference between the distribution spaces of
spectral features and the input context features processed by
FC layers. In the F0 model shown in Figure 1, the embedding
layer contributes to unifying these two spaces while it can’t be
employed directly for continuous features. Therefore, a prenet
module with self-attention [14] layers is introduced to process
historical frames of spectral features and to extract high-level
representations as our feedback link for spectral modeling.

In the prenet module, the sequence of K history frames
[ot−k, · · · ,ot] first pass through FC layers with dropout [18]
and convolution layers with batch normalization [19]. Then, a
d-dimensional position code [14] pt = [pt(0), . . . , pt(d−1)]>

is added to the output of batch normalization to provide explicit
position information for each frame in the history. The elements
in pt are calculated as

pt(2i) = sin(n/100002i/d), (3)

pt(2i+ 1) = cos(n/100002i/d), (4)

where i ∈ [0, . . . , d/2 − 1] is the dimension index. Then, N
multi-head self attention layers are stacked. Each layer has h
heads with scaled dot-product attention and adopts masks in



Table 1: The performance of F0 prediction on the validation set
with different history length K.

K=1 K=2 K=3 K=4

F0 RMSE (Hz)
-Natural 21.51 20.78 21.18 22.90
-Music Note 19.21 19.11 19.14 21.62
CORR
-Natural 0.95 0.96 0.96 0.95
-Music Note 0.96 0.97 0.96 0.96
V/UV ERROR (%) 2.37 2.35 2.36 2.38

the form of upper triangular matrix to ensure the autoregressive
causality. Finally, a FC layer with residual connections is
utilized to produce the outputs of the prenet.

3. Experiments
3.1. Experimental conditions

A Chinese singing voice corpus was adopted in our exper-
iments. This corpus contained 3290 utterances (100 songs
about 220 minutes) without background music from a male
singer. The recordings were sampled at 16kHz with 16-bit
quantization. This dataset was separated into a training set with
2976 utterances (91 songs), a validation set with 82 utterances
(2 songs), and a test set with 232 utterances (7 songs). The
43-dimensional acoustic features at each frame, including 40
MCCs, 1 energy, 1 F0, and 1 voiced/unvoicde (V/UV) flag, were
extracted by STRAIGHT [20] with 40ms window size and 5ms
frame shift.

3.2. System construction

Two acoustic models, one RNN-based baseline model and one
proposed DAR model, were built for comparison. In these
models, the input context features at each frame were 1969-
dimensional, including 1959 binary answers to context-related
questions, 9 numerical values describing the position of current
frame, and 1 numerical value describing the music note that
current frame belonged to. The phone and state boundaries
were obtained by HMM-based force alignment [21]. This
paper doesn’t investigate the duration modeling for SVS. Thus,
the segmentation results of natural recordings were used at
synthesis time for both acoustic models. A WaveRNN-based
vocoder [8, 22] was built to reconstruct 16-bit waveforms given
the predicted frame-level acoustic features.

3.2.1. Baseline model

The baseline model had 3 bidirectional GRU layers with 1024
units per layer and 1 fully connected output layer. This structure
was determined after tuning on the validation set. The output
acoustic features were composed of the static, delta and delta-
delta components of MCCs, energies and F0s, together with a
V/UV flag. An Adam optimizer [23] with a learning rate of 1e-3
was used to update the parameters to minimize the mean square
error (MSE) of model prediction on the training set. The final
acoustic features were generated from the model outputs by
maximum likelihood parameter generation (MLPG) algorithm.

3.2.2. DAR model

For building the DAR-based F0 model, the F0 values in Hz
were first transformed to Mel scale using mel = 1127log(1 +

Table 2: The MCD (dB) of spectral prediction on the validation
set with different history length K, head number h and self-
attention layer number N .

N=1 N=2 N=3 N=4

K=1, h=1 4.42 4.02 4.03 4.23
K=1, h=2 4.82 4.72 4.00 4.63
K=1, h=4 4.96 4.83 4.67 4.74
K=1, h=8 5.00 4.89 4.72 4.98
K=2, h=1 3.96 3.78 3.67 3.70
K=2, h=2 3.82 3.72 3.52 3.61
K=2, h=4 3.73 3.80 3.71 3.76
K=2, h=8 3.74 3.87 3.89 3.79
K=3, h=1 5.47 5.33 5.12 5.46
K=3, h=2 5.39 5.29 5.05 5.44
K=3, h=4 5.73 5.24 5.67 5.78
K=3, h=8 5.93 5.86 5.42 5.79

F0/700), and were then quantized into 255 levels between 106
and 831 on the Mel scale according to the data distribution of
training set. The dynamic F0 components were not used here.
The model structure shown in Figure 1 contained 2 FC layers
with 512 tanh units per layer. The bidirectional GRU layer in
the DAR module contained 256 units and the unidirectional
GRU layer contained 128 units. The following linear layer
had 256 units. The dropout rate of the feedback link was set
as 0.75. An Adam optimizer [23] with exponential decay of
learning rate was used to update the parameters by minimizing
the cross-entropy of F0 prediction on training set. The initial
learning rate was 0.01 and the decay rate was 0.9886 per
5000 learning steps. The history length K was tuned on the
validation set and the results are shown in Table 1. The F0 post-
processing strategy introduced in Section 2.2 was not applied
here. In Table 1, F0 RMSE and CORR mean the root mean
square error (RMSE) and the Pearson correlation coefficient
between the predicted and the reference F0 contours. V/UV
error denotes the percentage of frames with incorrect V/UV
flag prediction. Natural and Music Notes stands for using the F0
contours extracted from natural recordings and the F0 contours
determined by music notes as references respectively. From
this table, we can see that using more history frames may not
always improve the accuracy of F0 prediction. K = 2 achieved
the best performance on all metrics. For the post-processing,
the window size for moving average was also tuned on the
validation set and w = 15 achieved the best performance.

For building the DAR-based spectral model, its continuous
output at each frame included 40 MCCs and 1 energy. The
DAR module was the same as one for F0 modeling. The only
difference was that a linear output layer was adopted. In the
prenet module, the first two FC layers had 64 units with ReLU
activation per layer, and were followed by 2 dropout layers with
0.1 dropout rate. Then, the following convolution layer used
kernel size of 2 and 64 output channels, and were followed by
a batch normalization layer with ReLU activation. For multi-
head self-attention layers, the outputs of linear projection were
64-dimensional. The final FC layer had 64 units and residual
connections. An Adam optimizer [23] with exponential decay
of learning rate was used to update the parameters by minimize
the MSE of spectral prediction on training set. The initial
learning rate was 0.001 and the decay rate was 0.9886 per 250
learning steps. In Table 2, we compared the performance of
spectral prediction on the validation set with different history
length K, head number h and self-attention layer number N .
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Figure 3: F0 contours generated by different models for a voiced segment in our test set, where “Natural” and “Music Note” are two
references.

Table 3: Accuracies of acoustic feature prediction using the
baseline model (Baseline), the DAR model without F0 post-
processing (DAR), and the DAR model with F0 post-processing
(DAR+P) on test set.

Baseline DAR DAR+P

F0 RMSE (Hz)
-Natural 35.09 20.71 20.36
-Music Note 34.42 19.14 8.45
CORR
-Natural 0.89 0.96 0.96
-Music Note 0.89 0.97 0.99
V/UV ERROR (%) 2.57 2.35 2.35
MCD (dB) 4.16 3.51 3.51

Similar to F0 modeling, the optimal history length was K = 2
and the optimal mel-cepstral distortion (MCD) was achieved by
h = 2 and N = 3.

3.3. Objective evaluation

We compared the accuracies of acoustic feature prediction using
the baseline model (Baseline), the DAR model without F0
post-processing (DAR), and the DAR model with F0 post-
processing (DAR+P) on test set. The results are shown in Table
3. From this table, we can see that the DAR-based F0 model
achieved lower F0 RMSE and higher correlation coefficient
than the baseline model when either natural F0 contours or the
F0 contours determined by music notes were used as references.
The DAR-based models also achieved lower V/UV error and
MCD than the baseline model. After applying the F0 post-
processing strategy introduced in Section 2.2, the F0 prediction
accuracy got further improved, especially for the metrics using
the F0 contours determined by music notes as references.

Figure 3 shows the F0 contours generated by different
models for a voiced segment in our test set. We can observe
that the F0 contour determined by music notes was stair-like and
there were plenty of local dynamic movements, e.g., vibratos,
in the F0 contour extracted from natural speech. The F0 contour
predicted by the baseline model was over-smoothed and failed
to reproduce vibratos. In contrast, vibratos can be generated
effectively by the DAR-based F0 model. The proposed F0 post-
processing strategy further alleviated the inconsistency between
the overall shape of the predicted F0 contour and the F0 values
determined by music notes.

3% 11%

23%

DAR vs. Baseline

DAR+P vs. DAR

DAR DAR+P Baseline No pref

86%

58% 19%

Figure 4: The subjective preference scores among Baseline,
DAR and DAR+P.

3.4. Subjective evaluation

Subjective listening tests were carried out to evaluate the pref-
erence scores between the songs synthesized by different meth-
ods. 5 songs and 6 utterances in each song were randomly
selected from our test set and were synthesized by the three
methods listed in Table 3. Two preference tests were conducted
to compare Baseline with DAR, and DAR with DAR+P respec-
tively. 10 Chinese native listeners participated in each test using
headphones. Each pair of synthetic utterances were presented
to a listener by random order, and the listener was asked to
make a choice among, 1) the former was better, 2) the latter was
better, and 3) there was no preference. The average preference
scores are shown in Figure 4. It shows that our proposed
method using DARs for acoustic modeling was significantly
preferred than the RNN-based baseline method (p < 0.001).
This can be attributed to the advantages of DARs at modeling
the temporal dependency of acoustic features across frames.
The preference scores between DAR and DAR+P show that
the proposed F0 post-processing strategy further improved the
performance of DAR-based F0 prediction (p < 0.01). These
results are consistent with the objective ones shown in Table 3.

4. Conclusions
In this paper, we have presented a method of using deep au-
toregressive (DAR) neural networks to model F0s and spectral
features in singing voice synthesis (SVS). For F0 modeling,
discretized F0 values are used and a moving average-based F0
post-processing strategy is designed to alleviate the inconsis-
tency between the predicted F0 contours and the F0 values
determined by music notes. Furthermore, a DAR-based spectral
model is proposed by designing a prenet module with self-
attention layers. Objective and subjective experimental results
have demonstrated the effectiveness of our proposed method.
To investigate the neural network-based methods of duration
modeling for SVS will be our work in the future.

Some samples of generated speech can be found at http://
home.ustc.edu.cn/˜yiyh/interspeech2019

http://home.ustc.edu.cn/~yiyh/interspeech2019
http://home.ustc.edu.cn/~yiyh/interspeech2019
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