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Abstract
Cognitive Load (CL) refers to the amount of mental demand
that a given task imposes on an individual’s cognitive system
and it can affect his/her productivity in very high load situa-
tions. In this paper, we propose an automatic system capable
of classifying the CL level of a speaker by analyzing his/her
voice. Our research on this topic goes into two main directions.
In the first one, we focus on the use of Long Short-Term Mem-
ory (LSTM) networks with different weighted pooling strate-
gies for CL level classification. In the second contribution, for
overcoming the need of a large amount of training data, we pro-
pose a novel attention mechanism that uses the Kalinli’s audi-
tory saliency model. Experiments show that our proposal out-
performs significantly both, a baseline system based on Support
Vector Machines (SVM) and a LSTM-based system with logis-
tic regression attention model.
Index Terms: cognitive load, speech, LSTM, weigthed pool-
ing, auditory saliency, attention model

1. Introduction
Cognitive Load (CL) refers to the amount of mental demand
that a given task imposes on a subject’s cognitive system and it
is usually associated to the working memory that refers to the
capacity of holding short-term information in the brain [1]. As
overload situations can affect negatively the individual’s perfor-
mance, the automatic detection of the cognitive load levels has
many applications in real scenarios such as drivers’ monitoring.

Speech-based CL detection systems are particularly inter-
esting since they are non-intrusive and speech can be easily
recorded in real applications. In fact, in 2014, an international
challenge (Cognitive Load Sub-Challenge inside the INTER-
SPEECH 2014 Computational Paralinguistics Challenge) was
organized with the aim of studying the best acoustic features
and classifiers for this task [2]. Following this line of research,
this work focuses on the design of an automatic system for CL
level classification from speech.

Regarding the feature extraction, different acoustic char-
acteristics have been proposed as spectral-related parameters
such as, Mel-Frequency Cepstral Coefficients (MFCC) [2], [3],
spectral centroid, spectral flux [2] and prosodic cues (inten-
sity, pitch, silence duration, ...) [4], [5]. Respect to the classi-
fier module, Gaussian Mixture Models (GMM) [3] and Support
Vector Machines (SVM) [2] [5] are the most common choices.

However, in the last years, the application of Deep Learning
(DL) models to speech-related tasks, such as Automatic Speech
Recognition (ASR) [6], [7], Language Recognition (LR) [8] or
Speech Emotion Recognition (SER) [9], [10], [11] has allowed
to increase the performance drastically. Convolutional Neural
Networks (CNN) [12], [7], Long Short-Term Memory (LSTM)

[13] and their combination are the most commonly used ar-
chitectures in this field. On the one hand, CNNs exhibit the
capability of learning optimal speech representations. On the
other hand, LSTMs are capable to perform temporal modeling,
so they are very suitable for dealing with sequences as it is the
case of speech signals.

A new line of research, complementary to CNN and LSTM
models, tries to learn the structure of the temporal sequences
aiming at modeling the relevance of each frame to the task un-
der consideration. In particular, the so-called attention models
are capable of increasing the DL-based systems performance by
emphasizing the contribution of certain temporal frames to the
final output. These models have been successfully proposed for
ASR [14], machine translation [15] or SER [9], [10], [11], [16].

From a more general perspective, the concept of atten-
tion refers to a complex cognitive function that allows humans
to select the most salient or relevant events in their environ-
ment in order to focus their sensory and cognitive resources on
them. Regarding the aural modality, in recent years, there have
been several efforts for developing attention or saliency auditory
models that try to mimic this human mechanism [17], [18]. In
this paper, we hypothesize that these saliency models can help
to determine the frames conveying the most relevant informa-
tion about the subject’s CL level, and, for that, they can be used
as a kind of attentional model inside a LSTM-based system.

In this paper, we present two main contributions. Firstly,
we focus on the use of LSTMs in combination with different
weighted pooling strategies for CL level classification, as, to our
knowledge, there is no previous works in this direction for this
specific task. As this problem has many similarities to SER, our
work is mainly based on previous research on emotion classifi-
cation from speech, especially, on [9] and [11]. Secondly, we
propose the use of auditory saliency models as an attentional
mechanism for LSTM-based CL level determination.

The remainder of this paper is organized as follows: Section
2 describes the fundamentals of LSTM with weighted pooling,
Section 3 covers the attention-based weighting schemes consid-
ered, including our proposal. Results are presented in Section
4, followed by some conclusions of the research in Section 5.

2. LSTM with Weighted Pooling
Long Short-Term Memory networks are a kind of recurrent neu-
ral networks that have the ability to store information from the
past in the so-called memory blocks [13], in such a way that
they are capable of learning long-term dependencies, overcom-
ing the vanishing gradient problem. Therefore, LSTM outputs
depend on the present and previous inputs, and, therefore, they
are very suitable for modeling temporal sequences, as speech.

The sequence-to-sequence learning carried out by LSTMs
can be thought as a transformation of an input sequence of
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length T , x = {x1, ..., xT } into an output sequence y =
{y1, ..., yT } of the same length, assuming that the classification
process is easier in the y-space than in the x-space. However, as
in the case of SER, CL classification can be seen as a many-to-
one sequence-to-sequence learning problem [9], as the input is
a sequence of acoustic vectors and the final system output must
be the predicted cognitive load level for the whole utterance
(one single value). For this reason, it is advisable to include an
intermediate stage in order to generate a more compact repre-
sentation of the temporal LSTM output sequence that, in turn,
will be the input to the classifier [9], [10]. A most common op-
tion is to use a Weighted Pooling (WP) module [11] consisting
of two different steps, weighting and temporal integration.

In the first stage, a weight αt is computed and assigned to
each temporal LSTM output yt, following a certain criterion. In
the second one, temporal aggregation, the weighted elements of
the LSTM output sequence are somehow combined over time
for producing a summarized representation of the information
contained in this LSTM output. Usually, this is done by per-
forming a simple aggregation operation, as follows,

z =

T∑
t=1

αtyt (1)

where y = {y1, y2, ..., yT } is the LSTM output sequence,
α = {α1, α2, ..., αT } is the corresponding weight vector and z
is the final utterance-level representation.

Well-known particular examples of WP are mean-pooling,
where all the weights are equal and set to 1/T [11]; max-
pooling, where all weights are zero except the weight of the
maximum observed output, which is 1 [12]; and last-pooling
where only the weights corresponding to the last M frames of
the LSTM output are different from zero and set to 1/M [8].

3. Attention-based Weighted Pooling
Schemes

In this Section we present the two attentional WP schemes used
in this work: the regression attention weights described in [11]
for SER and our proposal based on auditory saliency models.

3.1. Logistic regression attention weights

According to [11], this strategy is appropriate in situations
where there is a lack of training data (as in this case), preventing
the use of more complex attention models, as those described in
[9], [10]. Here, the weights are computed as a simple logistic
regression, through this equation,

αt =
exp(uT yt)∑t=T

t=1 exp(uT yt)
(2)

where u and y are the attention parameters and the LSTM
output, respectively. Both, u and y are obtained by using the
back-propagation algorithm in the system training process.

3.2. Saliency-based weights

Our hypothesis is that, when the training data is scarce, it is not
feasible to properly trained attentional models, and therefore, it
could be more effective to use attention weights derived from
external cues. In particular, in this work, as external source of
information, we consider the auditory saliency model developed
by Kalinli [17] that assigns a saliency score to each time instant.
Our assumption is that frames with higher saliency values are

more likely to present a strong content about the subject’s CL
level, and therefore, larger weights should be assigned to them
into the WP scheme.

Kalinli’s model extracts five features (intensity, frequency
and temporal contrast, orientation and pitch) from the spectro-
gram at multiple scales, that, after the computation of center-
surround differences, result in a set of conspicuity maps. These
maps are normalized by using an iterative and non-linear al-
gorithm that emphasizes the most prominent areas in the time-
frequency representation, and summed for obtaining the final
2D auditory saliency map.

In order to determine the relevance score for each temporal
frame, the saliency map is summed across frequency channels
for each time instant [19] and normalized to zero mean and unit
variance at utterance-level, yielding a saliency signal xsal(t).
Finally, the weights are obtained as the result of the softmax
transformation applied to the saliency signal in order to guaran-
tee that their sum across all the frames of the utterance is one,

αt =
exp(xsal(t))∑t=T

t=1 exp(xsal(t))
(3)

We have considered two variants of this method. In the
first case (Normalized Saliency), the saliency signal is derived
from the normalized conspicuity maps, as explained before. In
the second case (Unormalized Saliency), the only difference is
that xsal(t) is obtained from the conspicuity maps without the
application of the iterative normalization process.

4. Experiments and Results
4.1. Database and Baseline System

We have adopted the “Cognitive Load with Speech and EGG”
(CSLE) database [20], [2] for our experiments. This database
have been used in the Cognitive Load Sub-Challenge inside
the 2014 COMPARE Challenge [2]. It contains speech from
26 Australian English speakers recorded while performing a set
of tasks designed for inducing different levels of cognitive load
(low, medium and high, denoted as L1, L2 and L3, respectively).
As in the challenge, we have considered these three tasks:

• Reading Sentence (RS). Speakers were asked to read a set
of sentences and recall an isolated letter between them.

• Stroop Time Pressure (STP). Based on the Stroop test
[21], speakers were required to indicate the color of a set
of printed words that, in turn, are names of colors.

• Stroop Dual (SD). Similar to the previous task, with the
difference that speakers had to execute another simulta-
neous task (tone counting) in the high load scenario.

The challenge organizers provided a partition of the
database into training + development and test subsets, where
it was guaranteed that speakers belong to only one of these sub-
sets. Table 1 shows the details about the database composition.

The baseline system is the one provided by the challenge
organizers whose details can be found in [2]. In summary, the
acoustic features are obtained by using the open-source openS-
MILE feature extractor [22] and are composed of 6373 static
characteristics, which are functionals (statistical moments, per-
centiles, peaks, etc.) of short-term Low-Level Descriptors
(LLD) and are computed at utterance level. The LLDs con-
sist of 65 energy-related, spectral and prosodic characteristics
computed in a short-term basis. The classifier is a linear kernel
SVM implemented by using the WEKA toolkit [23].
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Table 1: Composition of the CSLE database. For each task, the
number of utterances per subset and CL level are indicated.

Number of utterances
Task Subset L1 L2 L3

Train+Dev 1350 378 378 594
Reading Sentence Test 600 168 168 264

Train+Dev 162 54 54 54
Stroop Time Pressure Test 72 24 24 24

Train+Dev 162 54 54 54
Stroop Dual Test 72 24 24 24

Train+Dev 1674 486 486 702
Total Test 744 216 216 312

4.2. LSTM-based Systems Configuration

Fig. 1 shows the LSTM architectures used in this work with two
different weighting schemes: logistic regression weights (a) and
our proposal, saliency-based weights (b). Both systems were
implemented with the Tensorflow [24] and Keras [25] packages.
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Figure 1: Block diagram of the LSTM-based systems for CL
classification: (a) Logistic regression model; (b) Saliency-
based model. In brackets, the dimension of each variable, where
T , L, nB , nL and nC , stand for the no. of frames of the input
signal, the length of the LSTM input/output sequence, the no. of
mel filters, LSTM units and classes (CL levels), respectively.

In all cases, the input feature set consists of nB = 64 log-
Mel filterbank energies (log-Mels) computed every 10ms over
Hamming windows of 32 ms long and a mel-scaled filterbank
composed of 64 filters and is obtained by using the Librosa
Python toolkit [26]. After feature extraction, mean and standard
deviation normalization are applied at utterance-level yielding
to a set of normalized log-Mels sequences xI with T x nB

dimensions, where T is the number of frames of each utterance.
The length of the LSTM input sequences is set toL = 1024

(which corresponds to approximately 10 s) for the RS task and
to L = 2048 (about 20 s) for the STP and SD tasks. Shorter
utterances are padded with zeros by using a Masking layer, in
such a way that these masked values are not used in further com-
putations. Longer utterances are cut (this is only necessary in a
few cases in the SD task). The output sequence of the Masking
layer is denoted as x and its dimensions are L x nB .

This sequence is passed through a LSTM layer with nL =
128 memory cells and 25% dropout to avoid over-fitting in the
training process. The LSTM output, y, is a sequence of size

L x nL. Next, the information contained in y is summarized by
using the considered weighting scheme with weights α, yield-
ing a nL-dimensional vector, z. The length of the weight vector
α is L. Note that when T < L, αt = 0, T < t ≤ L. The vec-
tor z is the input of a dense layer with nC = 3 nodes with soft-
max activation producing a nC -dimensional output, zO , repre-
senting the probabilities of each class (CL levels). Finally, the
class with higher probability is assigned to the utterance.

The LSTM models are trained using stochastic gradient de-
scent and the Adam method with an initial learning rate of 0.001
for the RS task and 0.0005 for the STP and SD. Following the
challenge recommendations, each task is considered separately.

In the logistic regression model, the attention parameter
vector u has a dimension of nL = 128, all its components are
initialized to 1/nL and then refined during the training stage.

In our approach, T -dimensional saliency signals, denoted
as xsal, are derived from the spectrogram magnitude computed
over Hamming windows of 37 ms long with a 95% overlap,
following the Kalinli’s auditory saliency model [17] as imple-
mented in the MT TOOLS toolbox [27].

4.3. Results

Table 2 contains the results achieved for the baseline system and
different LSTM architectures for the three tasks under consid-
eration, RS, STP and SD. The column “Average” refers to the
micro-average across the tasks. As the number of instances for
each class (CL levels) is unbalanced, results are given in terms
of the Unweighted Average Recall (UAR) that is computed as
the unweighted mean of the class-specific recalls. In the case
of the LSTM-based systems, each experiment was run 10 times
and therefore, Table 2 shows the average UAR across the 10
subexperiments and the respective standard-deviation.

LSTM corresponds to the conventional approach where no
weighted pooling is applied and only the last frame of the
LSTM output is passed through the following dense softmax
layer. In the LSTM+VAD alternative, a Voice Activity Detector
(VAD) is applied to the raw speech signals before the feature
extraction process in order to remove the silence/noise frames.
As can be observed, the use of a VAD is not beneficial as it
produces a decrease in performance. This suggests that si-
lence pauses convey important information for discriminating
between different CL levels, as they are related to the rhythm,
elocution speed and disfluencies that can be heavily affected by
the speaker’s cognitive load state [28], [29].

The well-known weighting schemes Last-pooling (with
M = 200 frames), Max-pooling and Mean-pooling outperform
LSTM showing that not only the last frame contains relevant
information for the task. Among these three approaches, Mean-
pooling achieves the best performance, and therefore, it seems
better not to completely discard LSTM frames.

The Logistic Regression Attention method produces better
results than the previous ones, although they are rather similar
to Mean-pooling in the RS task. Nevertheless, it is clear that
weighting the contribution of each frame can help to improve
the performance of the system.

The first of our proposals, the use of weights derived from
the Kalinli’s normalized saliency map (Normalized Saliency)
obtains better results than all previous approaches for the RS
task and on average. For the STP and SD tasks, the achieved
UARs are better than the previous strategies except for Logis-
tic Regression Attention where results are similar. Nevertheless,
our second approach, where the weights are extracted from the
unnormalized saliency maps (Unnormalized Saliency), clearly
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Table 2: Unweighted Average Recalls (UARs) [%] for the baseline system and different LSTM-based classifiers for the Reading Sen-
tence, Stroop Time Pressure and Stroop Dual tasks.

System Reading Sentence (RS) Stroop Time Pressure (STP) Stroop Dual (SD) Average

SVM (baseline) [2] 61.50 66.70 56.90 61.60

LSTM 48.87± 1.36 55.42± 1.02 45.83± 4.09 49.61± 1.33

LSTM + VAD 45.34± 1.79 54.01± 2.02 46.60± 4.06 46.36± 1.51

LSTM Last-Pooling 52.42± 1.53 59.57± 2.81 46.60± 4.11 52.67± 1.30

LSTM Max-Pooling 59.87± 1.28 53.48± 0.98 41.95± 1.83 57.54± 1.18

LSTM Mean-Pooling 62.99± 0.82 60.69± 0.67 50.00± 2.07 61.61± 1.01

LSTM Logistic Regression Attention 63.58± 0.48 63.47± 0.67 54.59± 0.67 62.75± 0.59

LSTM Normalized Saliency 65.09± 0.55 63.06± 2.64 54.31± 2.01 63.86± 0.86

LSTM Unnormalized Saliency 66.97± 0.68 69.24± 0.52 63.69± 1.25 66.80± 0.50
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Figure 2: Attention weights for one utterance belonging to the
Reading Sentence task obtained with different strategies. MP:
Mean-pooling; LR: Logistic regression attention; NSAL: Nor-
malized saliency; UnSAL: Unnormalized saliency.

outperforms all the rest of LSTM-based systems for all the tasks
and on average. In particular, Unnormalized Saliency achieves
a relative error reduction with respect to Logistic Regression At-
tention of 9.3%, 15.8%, 20.0% and 10.9% for the RS, STP and
SD tasks and on average, respectively. These results corroborate
our hypothesis that saliency signals could be used for establish-
ing to some extent the relative importance of some frames for
the CL level determination.

Fig. 2 depicts from top to bottom, the waveform of an utter-
ance belonging to the RS task, the weights used in the Logistic
Regression Attention, Normalized Saliency and Unnormalized
Saliency approaches. Contrary to the observations made in [11],
in our case, the regression attention weights are very uniform
and closely resemble the mean-pooling weights (note the differ-
ence in scales). This justifies the fact that the results achieved
by Mean-pooling and Logistic Regression Attention are rather
similar. Normalized Saliency weights are very peaky, discard-
ing many frames that could contain useful information for the
task. However, weights of the Unnormalized Saliency approach
presents a large degree of variation, suggesting that the unnor-
malized saliency signal becomes a good approximation of the
amount of cognitive load content of a speech frame and it is
useful in situations when not enough data is available for train-
ing more sophisticated attention models.

For comparison purposes, Table 3 contains the UARs
achieved by several state-of-the-art systems on the CSLE
database. As can be observed, our system obtains the second
best result, only from behind [5], that was the winner of the
2014 COMPARE challenge for CL level classification.

Table 3: Comparison results in terms of UAR [%] (average over
the three tasks) for different approaches. SDC stands for Shifted
Delta Coefficients and SCF for Spectral Centroid Frequency.

System Average

SVM (baseline) [2] 61.60

High-level features + SVM [30] 63.10

Fusion of [2], MFCC+SDC supervectors and
SCF supervectors + GMM-SVM [3] 63.70

Feature Selection + Speaker Clustering + SVM [31] 64.80

LSTM Unnormalized Saliency (this paper) 66.80

Fusion of 4 Speech Streams + i-Vectors + SVM [5] 68.90

5. Conclusions and Future Work
In this paper, we have proposed an automatic system capable
of classifying the cognitive load level of a speaker by analyz-
ing his/her voice. We have presented two main contributions.
Firstly, we have designed and evaluated for this task a LSTM-
based system with different weighted pooling strategies. Sec-
ondly, we have proposed a novel attention mechanism based
on the Kalinli’s auditory saliency model. Experiments have
shown that the weighted pooling LSTM system with weights
derived from the unnormalized saliency maps achieves 13.5%
and 10.9% relative error reductions with respect to the baseline
SVM-based and the LSTM-based with logistic regression atten-
tion systems, respectively.

For future work, we plan to extend our research on CL
level classification from speech in two directions: to analyze
the relationship between the emphasized frames by the saliency
model and some speech production properties associated with
CL, such as speed rate, formant changes, etc. and, to study the
use of alternative auditory saliency techniques [18].
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