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Abstract
Computer assisted language learning (CALL) systems aid
learners to monitor their progress by providing scoring and
feedback on language assessment tasks. Free speaking tests al-
low assessment of what a learner has said, as well as how they
said it. For these tasks, Automatic Speech Recognition (ASR)
is required to generate transcriptions of a candidate’s responses,
the quality of these transcriptions is crucial to provide reliable
feedback in downstream processes. This paper considers the
impact of ASR performance on Grammatical Error Detection
(GED) for free speaking tasks, as an example of providing feed-
back on a learner’s use of English. The performance of an ad-
vanced deep-learning based GED system, initially trained on
written corpora, is used to evaluate the influence of ASR errors.
One consequence of these errors is that grammatical errors can
result from incorrect transcriptions as well as learner errors, this
may yield confusing feedback. To mitigate the effect of these
errors, and reduce erroneous feedback, ASR confidence scores
are incorporated into the GED system. By additionally adapting
the written text GED system to the speech domain, using ASR
transcriptions, significant gains in performance can be achieved.
Analysis of the GED performance for different grammatical er-
ror types and across grade is also presented.
Index Terms: speech recognition, grammatical error detection

1. Introduction
Over 1.5 billion people worldwide are expected to be using and
learning English as an additional language by 2020 [1]. Com-
puter assisted language learning (CALL) systems are essential
to support this level of interest, allowing learners to check their
progress and identify areas they need to improve. Free speaking
tasks, where a candidate speaks for 15-60 seconds in response
to a series of prompts, are preferred to assess speaking ability.
A key spoken communication skill is the use of English, putting
words together using ”grammar” that is consistent with a native
speaker. Even native speakers don’t tend to follow all grammat-
ical rules when free speaking. There are, however, phrases and
word sequences that a native speaker is highly unlikely to say
but a learner might in error. Detection of and feedback of these
”grammatical errors” can therefore help learning.

Attempts have been made to provide feedback on spoken
learner English, each with coverage constraints. In [2] a rule-
based grammatical error collection system was proposed which
is tailored to a subset of error types. For non-spontaneous
speech, [3] proposed a grammatical error detection (GED) sys-
tem comparing a candidate’s answer to a matching reference fo-
cused on a question-answering style test. By contrast, in recent
years significant developments have been achieved in detecting
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the full range of grammatical errors in written text through deep
learning methods [4]. It is therefore interesting to adapt these
text GED systems and apply advanced deep learning based tech-
niques to developing spoken GED on free speech.

In a CALL system, the candidate response to free speak-
ing tasks is not known to the system. The spoken GED, there-
fore, has to run on the output of an automatic speech recogni-
tion (ASR) system. It was shown in [5] and [6] that the word
error rate (WER) of words corresponding to grammatical errors
is higher than fluent, grammatical speech for speakers of the
same proficiency level. This poses a greater challenge of pro-
viding reliable feedback to spoken learner English as it would
be confusing to the learner to provide feedback on an error that
resulted from incorrect transcriptions rather than learner errors.

To reduce confusion, it is important to reduce false positives
arising from errors in ASR transcriptions. One way of mitigat-
ing this problem is to reduce errors in transcriptions through im-
proving ASR systems. Reducing the WER of an ASR system
has been shown to help improve language assessment [7, 8, 5].
Another possible approach is to make use of a richer set of fea-
tures derived from the ASR output; in particular, ASR confi-
dence scores can be incorporated into the GED system as an
additional condition to help determine whether or not to give
feedback to candidates. This paper compares three ASR sys-
tems with decreasing WER and analyses the impact of ASR
performance on the spoken GED system. The effect of incorpo-
rating confidence scores into GED system is evaluated. Anal-
ysis of the GED performance for different grammatical error
types and across proficiency levels is also presented.

2. Grammatical Error Detection
In this work, a bidirectional LSTM based model1 [9] was used
for the grammatical error detection (GED) system. GED is
modelled as a sequence labelling task [6]. For an input word se-
quence w = {w1, . . . , wN}, a reference label yi (1:incorrect;
0:correct) is given to each wordwi. The probability distribution
of ŷi over the two labels is the target to be predicted. The train-
ing objective function is the log-likelihood of ŷi summing over
all L sentences and all N (r) words in each sentence:∑

r

∑
i

log(P (y
(r)
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(r))); r = 1, ...L; i = 1, ...N (r) (1)

Written text trained GED system can be extended to handle
ASR transcriptions by making use of ASR confidence scores.
When the ASR system generates an incorrect transcription, it
would be confusing for GED to give feedback on that word as
the true candidate response is lost in the transcription. Words
with low confidence scores are more likely to be ASR errors,
therefore for the GED system to give feedback to the candidate
indicating a grammatical error, two criteria are to be met: the

1https://github.com/marekrei/sequence-labeler



ASR confidence score passes a threshold α and the GED system
predicts that the probability of a grammatical error occurring is
over β:

ŷ∗i =

{
1; P (w∗i |x∗) > α and P (ŷ∗i = 1|w∗) > β
∅; otherwise

where P (w∗i |x∗) is the ASR confidence that word w∗i was cor-
rectly recognised given input audio sequence x∗. Based on this
feedback rules, the objective function is modified by reducing
the words considered for utterrance r in the cross entropy loss
to:

i : P (w
(r)
i |x

(r)) > α

i.e. when the ASR confidence is below α, the GED system is
not penalised regardless of the prediction made on this word.

3. ASR
Three automatic speech recognition (ASR) systems are consid-
ered, all having the same vocabulary. Each is a hybrid deep
learning-HMM graphemic system. The acoustic models (AM)
are trained on non-native learner English speech recorded on
business English tests (BULATS [10]). The first system, ASR1,
is a speaker-independent joint decoding of a stacked hybrid
DNN and LSTM system that was used in [5, 6, 11]. Both DNN
and LSTM are trained on 39-dimensional bottleneck (BN) fea-
tures. The output targets of the neural networks are global state-
position tri-grapheme targets generated by a set of graphemic
PLP GMM-HMMs trained on the same data. The models are
trained on combined crowd-sourced transcriptions [12]. An in-
domain trigram language model (LM) is trained on the same
transcriptions and then interpolated with a general pre-trained
Broadcast News English [13] LM. The transcriptions from
ASR1 are decoded using this interpolated trigram.

The second system, ASR2, is a speaker adaptive se-
quence teacher-student (TS) trained lattice-free maximum mu-
tual information (LF-MMI) factorised time-delay neural net-
work (TDNN-F) system [14, 15, 16, 11]. Three TDNN-
F models are trained with different random initialisations to
form a random ensemble. They are trained on 40-dimensional
filterbank features with 100-dimensional i-vectors. Lightly-
supervised transcriptions produced by ASR1 are used for train-
ing [11]. A single student TDNN-F model with the same input
is trained by minimising the Kullback-Leibler (KL) divergence
between the sequence-level posteriors produced by the student
TDNN-F model and the combined posteriors from the teacher
ensemble. This TS trained model is decoded with a trigram LM
to produce the ASR2 transcriptions. The third system, ASR3,
is obtained by rescoring the lattices generated by ASR2 using
a succeeding word recurrent neural network LM (su-RNNLM)
[17]. Table 1 summarises the 3 systems with the amount of
training data used. Note that the su-RNNLM is trained on a
semi-supervised set by augmenting the supervised training set
with a unsupervised set that is decoded by ASR1.

Table 1: ASR systems compared.

System AM BULATS LM
Model Tng Model Tng

(hrs) (wds)
ASR1 DNN+LSTM 330 Trigram 1.8M
ASR2 TDNN-F TS 500 Trigram 2.6M
ASR3 su-RNNLM 25.6M

4. Experimental results
4.1. Data and setup

Due to the lack of annotated spoken learner corpora, GED train-
ing was initially conducted on the written Cambridge Learner
Corpus (CLC) following previous work in [6, 9] then fine-tuned
to various speech domain corpora using both manual and ASR
transcriptions. Grammatical errors are carefully annotated in
the CLC data, which consists of text responses to written exam-
inations targeting candidates at different proficiency levels. The
same train/dev/test split defined in [6] was used. To adapt the
written corpora to be closer to speech transcriptions, spelling
mistakes, punctuation and capitalisation were removed. The
FCE-public dataset [18] is a subset of the CLC corpus, thus
falling under the same domain as CLC. It was used for evalua-
tion in the fine-tuning experiments as a sanity check.

Following [6], one public and one proprietary spoken cor-
pora were used to evaluate spoken GED performance. The
publicly available NICT Japanese Learner English (JLE) Cor-
pus [19] provides manual transcriptions of a English speak-
ing test involving candidates at A1-B2 levels on the CEFR
scale [20]. JLE is labeled with meta-data and grammatical er-
rors [19], but no audio information is available. The other test
corpus came from the free speaking parts of the spoken BU-
LATS test [21]. Manual transcriptions are annotated with meta-
data, speech units and grammatical errors [22]. ASR transcrip-
tions were generated using the ASR systems discussed above.

Speech transcriptions are fundamentally different from
written text in two main aspects. Firstly, disfluencies, such as
false starts and repetitions, only exist in spoken language. They
disrupt the flow of the transcriptions, yet by definition they can-
not be categorised as a grammatical error. Secondly, sentence
breaks are not automatically predicted in ASR output, which
might lead to overly long sequences. These discrepancies pose
great challenges in adapting written GED to spoken corpora,
and they remain active research topics e.g. [23, 24]. The focus
of this work is to investigate the impact of ASR on spoken GED,
therefore several pre-processings were applied to the test sets to
bridge the gap between text and spoken corpora, such that rea-
sonably good baseline GED results can be achieved: disfluen-
cies marked in the meta-data were manually removed for JLE
and BULATS; both manual and ASR transcriptions of the BU-
LATS test set were segmented into short sentence units using
reference speech units; no segmentation was applied to JLE as
its conversational turns are sufficiently short.

In GED training, word embeddings were initialised with
Google’s 3 million word word2vec [25]. ASR confidence scores
used in error detection were returned by the ASR engines, fol-
lowed by piece-wise linear mapping [26]. Following [6], the
fine-tuning of the GED models used for domain adaptation
adopted a 10-fold cross-validation approach. Unlike [6], ab-
breviations with apostrophes were tokenised using the RASP
convention [27], e.g.: it′s→ it+′ s.

4.2. Text GED performance on ASR transcriptions

To assess GED performance on ASR output, the manual and
ASR transcriptions were aligned using a modified Damerau-
Levenshtein algorithm [6]. The reference GE labels were
mapped to the aligned ASR word. When an ASR error is seen,
there are two choices of mapping. A grammar-based approach
maps GE labels ”as is” regardless of ASR errors. This approach
does not penalise the system for its ASR performance, thus
it often scores GED performance higher than the alternative,



feedback-based, approach. The feedback-based scheme labels
GEs as correct where an ASR error occurs. The rationale is that
giving feedback on words identified as grammatical errors due
to an ASR error will cause confusion to the learner. Feedback-
based scoring better depicts the system performance from the
user perspective, thus was used for comparison across various
corpora as well as manual transcriptions. Grammar-based scor-
ing was considered to help analyse the nature of the grammati-
cal errors as well as the GED system. For example:

MAN she say what i made do . . .
ref c i c c i c

ASR she way what i made do . . .
grammar c i c c i c
feedback c c c c i c

Table 2: Effect of ASR system on GED F0.5.

System WER grammar feedback
— +conf — +conf

ASR1 25.5 30.5 30.5 25.7 27.2
ASR2 21.3 32.5 32.6 27.8 29.9
ASR3 19.5 33.6 33.8 29.4 31.2

Table 2 gives GED F0.5 scores for three ASR transcrip-
tions using the system trained on the CLC written corpora. It is
unsurprising that as the WER decreases the GED performance
improves for both grammar-based and feedback-based scoring.
There is a gap with GED on manual transcriptions, with F0.5 of
42.5, 29.4, respectively for manual and ASR3 feedback GED.

To reduce erroneous feedback caused by incorrect tran-
scriptions, ASR confidence scores were incorporated into the
GED system. When the confidence threshold is set to be 0, all
transcribed words receive a GE label (i.e. they may be labelled
as grammatically incorrect). When the confidence threshold
increases, ASR words with confidence scores lower than the
threshold are rejected, labelled as grammatically correct.

Figure 1: Feedback-based F0.5-confidence curve.

Figure 1 shows the feedback-based F0.5 scores of the CLC-
trained GED system evaluated on BULATS against the ASR
confidence thresholds. In the low confidence region, GED per-
formance gradually rises as the confidence threshold increases.
Low confidence scores often imply ASR errors, thus rejecting
words with low confidence helps to rule out some of the ASR
errors, which helps to reduce the number of false positives un-
der feedback-based scoring. After reaching a peak at around
a confidence of 0.4, the GED performance drops dramatically

as the confidence threshold goes up. High confidence thresh-
olds force more words to be marked as grammatically correct
even if they are correctly identified and recognised, which sig-
nificantly increases the number of false negatives thus reducing
F0.5. Grammar-based scoring plateaued in the low confidence
region followed by the same decreasing trend in the high con-
fidence region. When words with low confidence scores are
rejected, the reduced false positives complements the increased
false negatives. As the threshold is raised, the recall rate drops
dramatically and dominates the F0.5 score. Table 2 quotes the
highest F0.5 scores at the a confidence score threshold of 0.4.
The GED performance can be seen to have gained approxi-
mately 2 points over the feedback-based scoring; whereas the
grammar-based performance is unchanged.

4.3. GED fine-tuning

One of the challenges facing spoken GED is the lack of anno-
tated spoken learner corpora. One option is to adapt text GED
to spoken English. Here the trained written CLC-trained GED
model was fine-tuned to the speech data in the 10-fold cross-
validation fashion used in [6]. Table 3 contrasts the GED per-
formance before and after fine-tuning for various test sets.

Table 3: Precision (P), Recall (R) and F0.5 scores with a CLC
trained GED system and fine-tuned using cross-validation on
the test data2. Feedback-based ASR3 used for BULATS-asr.

Test fine-tune P R F0.5

Written FCE 7 74.0 29.6 56.9
3 72.1 30.8 56.9

Spoken

NICT-JLE 7 60.7 27.5 48.9
3 69.6 31.8 56.3

BULATS-man 7 45.7 33.3 42.5
3 64.8 35.9 55.8

BULATS-asr 7 29.1 30.6 29.4
3 46.8 25.1 39.9

+conf 7 33.2 24.9 31.2
3 46.8 26.6 40.6

As expected the written FCE corpus model does not benefit
from fine-tuning as the CLC and FCE both operate in the same
domain. GED performance on JLE and BULATS manual tran-
scriptions both improved significantly through domain adapta-
tion, reaching similar performance. This shows that GED is an
extremely domain sensitive task, and it is essential to tune the
GED model to the domain of interest before further evaluation.
The best performing ASR3 system was used to supply ASR
transcriptions. Feedback-based scoring was adopted in order
to analyse GED performance from a candidate’s perspective.
Fine-tuning on ASR transcriptions boosted the performance by
10.5 to 39.9 F0.5. This is a slightly smaller gain than for man-
ual, which may be due to the feedback-based scoring penalising
the system for ASR mistakes, as observed in Table 2.

To further reduce false positives caused by ASR errors, con-
fidence scores were taken into account during fine-tuning, us-
ing a threshold of 0.4 based on Figure 1. Here the confidence-
based ASR fine-tuning does not consider words with confidence
scores lower than the threshold of 0.4, consistent with those re-
jected from GED feedback. The performance was 0.7 higher
than the vanilla fine-tuning result, reaching an F0.5 of 40.6.

2The slight performance drop compared to our previous work [6] is
due to change of tokenisation to follow the RASP convention.



Figure 2 compares the GED performance on manual and
ASR transcriptions before and after fine-tuning (using vanilla
and confidence-based fine-tuning for manual and ASR respec-
tively). It is worth noting that the fine-tuned ASR model outper-
formed the baseline manual system in the high precision region
of most interest for deployment. The PR curves start at a lower
precision rate for the ASR transcription than manual. This is
due to the feedback-based scoring labeling all ASR errors as
grammatically correct. The initial precision gap between man-
ual and ASR transcriptions measures the direct penalty caused
by ASR errors on the GED system.

Figure 2: GED precision-recall curve on BULATS manual and
ASR (feedback-based ASR3) transcriptions.

5. Analysis
Table 4: Top 5 error tags on BULATS identified as incorrect by
manual and ASR confidence fine-tuned systems.

manual asr
Posn Tag No. % corr Tag No. % corr

1 DV 89 80.9% MC 412 77.4%
2 AGV 159 77.4% DV 48 75.0%
3 MC 462 76.0% AGV 115 71.3%
4 F 11 63.6% FN 45 60.0%
5 MD 506 58.5% AGN 161 53.4%

The top 5 error tags correctly detected by the manual and
ASR3 confidence fine-tuned GED systems on the BULATS data
are shown in Table 4. The systems operate similarly both in
terms of which tags they detect well and the level of correct
detection achieved. Errors in verb derivation (DV), verb agree-
ment (AGV) and missing connectors (MC) [22] are most likely
to be correctly detected. Some form errors (F, noun form (FN)),
missing determiner (MD) and noun agreement (AGN) also ap-
pear in the top 5 tags. Both the manual and ASR tuned GED
perform poorly, with very low % correct, on: replacement (sub-
stitution) errors (R∗) where the word or phrase is valid and has
the correct part-of-speech but needs replacing; other missing
(insertion) (M∗) types; and word order (W) errors.

It is interesting to contrast the spoken errors and GED rates
achieved with the written FCE GED results. On the latter DV,
AGV and MC error tags are correctly detected 61.5%, 56.3%
and 5%, respectively, so the spoken system is actually detect-
ing these tags more reliably. The most accurately detected er-
rors on FCE are the 96% countability of noun error (CN), 75-
91% incorrect inflections (IN,IJ,IV), and 73% adverb derivation
(DY) [28]. By contrast on BULATS countability errors are not

marked and only a handful of adverb derivation errors are ob-
served in the data. The spoken system struggles to detect inflec-
tion (I∗) errors, with 29-36% accuracy.

In practice the GED would be set to operate in the high
precision/low recall region to minimise incorrect feedback. [5]
showed that the WER, including on grammatical errors, de-
creases with increasing ASR confidence scores. Taking a P/R
threshold from the ASR3 fine-tune system in Figure 2 to give
83% P/22% R, and an ASR confidence score of ≥ 0.9, all er-
ror tags are detected with ≥63% accuracy and the top 12 tags
at ≥90%. Of the highest scoring tags in Table 4, over 75%
missing connectors are detected with 98% accuracy. Agree-
ment and verb derivation errors, however, tend to be excluded
due to lower confidence. In contrast, R∗, I∗ and F∗ errors score
highly, with 90% accuracy for 43% and 52% of commonly seen
replacement verb and preposition errors.

Figure 3: Probability of grammatical correctness per speaker
against expert grade for BULATS.

Figure 3 shows that a speaker’s proficiency level will af-
fect the likelihood that they make grammatical errors. There is
a wide variation in the probability of grammatical correctness
for the lowest grade speakers. This gradually narrows as the
speaker level improves, with the lower bound of probability of
correctness increasing with proficiency. Note, candidates at the
lower end of the grade scale who make very few errors tend to
use a restricted vocabulary and say very little, e.g. ”I do not un-
derstand”. A similar pattern of detection of error tags to Table 4
is observed across grades A1-B2. The verb derivation (DV) er-
rors mostly occur at the A2 and B1 levels. C speakers make
very few AGV and F∗ errors. A caveat to this analysis is that
manual disfluency detection and segmentation has been applied.
Automatic approaches may degrade GED performance.

6. Conclusions
This paper investigated the impact of ASR performance on
grammatical error detection (GED) with spontaneous, second
language learner, speech. A deep learning based bidirectional
LSTM framework was used for GED, initially trained on text
corpora. Three ASR systems with decreasing WER were con-
sidered. As expected, GED improves with higher transcription
accuracy. Incorporating ASR confidence scores into the GED
system reduced the number of false alarms for each ASR output,
thus boosting GED from the user perspective. Domain adapta-
tion through fine-tuning proved to be extremely successful in
adapting text GED to non-native English free speaking corpora.
The final confidence-based fine-tuned spoken GED system is
able to detect some error tags with a high precision for feed-
back. Ongoing research aims to automate the full process in-
cluding disfluency detection and speech segmentation.
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