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Abstract
The simulation of two-dimensional (2D) wave propagation is
an affordable computational task and its use can potentially im-
prove time performance in vocal tracts’ acoustic analysis. Sev-
eral models have been designed that rely on 2D wave solvers
and include 2D representations of three-dimensional (3D) vocal
tract-like geometries. However, until now, only the acoustics
of straight 3D tubes with circular cross-sections have been suc-
cessfully replicated with this approach. Furthermore, the simu-
lation of the resulting 2D shapes requires extremely high spatio-
temporal resolutions, dramatically reducing the speed boost de-
riving from the usage of a 2D wave solver. In this paper, we in-
troduce an in-progress novel vocal tract model that extends the
2D Finite-Difference Time-Domain wave solver (2.5D FDTD)
by adding tube depth, derived from the area functions, to the
acoustic solver. The model combines the speed of a light 2D
numerical scheme with the ability to natively simulate 3D tubes
that are symmetric in one dimension, hence relaxing previous
resolution requirements. An implementation of the 2.5D FDTD
is presented, along with evaluation of its performance in the
case of static vowel modeling. The paper discusses the current
features and limits of the approach, and the potential impact on
computational acoustics applications.
Index Terms: computational acoustics, vocal tract, FDTD, ar-
ticulatory speech synthesis

1. Introduction
The shape of the human upper vocal tract is quite intricate and
the study of its acoustics proves a challenging research topic.
The cavity that connects the larynx to the mouth opening forms
a curved tube with varying irregular cross-sectional shape, in
turn connected to several side branches, e.g., the nasal tract and
the piriform fossae. Since every detail of this complex structure
has an effect on voice production, the most typical approach to
the analysis of vocal tract acoustics is the employment of three-
dimensional (3D) simulations [1, 2, 3]. Such simulations capi-
talize on the computation of pressure wave propagation within
precise 3D geometrical reconstructions of real vocal tracts, and
are capable of producing highly accurate results. However, the
computational power required to solve wave equations in three
dimensions is remarkably high, yielding to simulation times that
range from several minutes to more than a day for just a few
milliseconds of audio [1, 4].

Several research groups explored two-dimensional (2D)
simulations as an alternative to a precise but costly 3D approach
[5, 6, 7, 4]. The reason for this interest is two-fold. Com-
pared to the 3D case, 2D wave equation solvers are character-
ized by much lower computational requirements and can poten-
tially achieve real-time or quasi real-time performance [8, 9].
Furthermore, this class of simulations appears to be capable of
preserving most of the geometrical details of the vocal tract that

is being analyzed. In 2D a vocal tract is represented by a flat
contour, typically extracted from the mid-sagittal slice of a 3D
tube built from its area function [7, 4]; it can include the vo-
cal tract’s original curvature as well as 2D equivalents of its
side-branches [6]. In other words, the only missing information
regards the varying cross-sectional shape of the 3D vocal tract,
which is replaced by a set of circumferences with the same area
progression.

However, in a practical scenario the advantages of 2D simu-
lations prove quite limited. As thoroughly discussed by Arnela
and Guasch for the case of vowel synthesis [4], a direct mid-
sagittal representation of the tube built from the vocal tract’s
area function produces erroneous formant locations and band-
widths, i.e., not matching the results obtained from the 3D
acoustic simulation of the same 3D shape. To fix these discrep-
ancies, the extracted 2D contours have to undergo a non-linear
deformation process that leads to a significant downsizing of the
vocal tract’s constrictions, in some cases up to an order of mag-
nitude [9]. A direct consequence of this modification regards
simulation times. To model such narrow constrictions, 2D sim-
ulations need to run with extremely high spatio-temporal reso-
lutions, in turn increasing the computational load of the solver
and producing waiting times far from real-time performance.
Moreover, the methodology proposed by Arnela and Guasch is
applicable only to the case of straight tubes, and it is still un-
clear how to obtain 2D contours that acoustically match curved
and/or branching 3D geometries.

In this paper, we present a novel approach to vocal tract
modeling, that stems from the 2D rationale [9] and improves
upon it. It capitalizes on an extended 2D Finite-Difference
Time-Domain solver (2.5D FDTD), capable of simulating how
pressure propagates in 3D geometries that are symmetric at least
in one dimension, typically along the z axis (with x and y be-
ing the dimensions of the starting 2D scheme). At the core of
this approach there is the inclusion within the model of extra
impedance terms, that derive from the tube’s depth (i.e., its con-
tinuous extension along z) and that are sampled in every point
of the scheme; the result is a depth map, that combined with
the 2D mid-sagittal contour of the original 3D geometry al-
lows for a fast simulation of its acoustics, with computational
requirements comparable to the case of standard 2D numerical
schemes. Depth maps can be retrieved from area functions as
well as from full 3D models of real vocal tracts, like Magnetic
Resonance Imaging scans; furthermore, the overall 2.5D repre-
sentation of the analyzed geometry leaves its original propor-
tions intact, discarding the need for the extremely high spatio-
temporal resolutions that characterizes 2D simulations. How-
ever, as discussed in the next section, the development of the
2.5D model is still in progress and at its current stage of devel-
opment it can be employed only for the acoustic simulation of
straight tubes with circular cross-sectional shape.
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2. Methods
2.1. Acoustics Equation

Let us consider a sound wave propagating in air, and let us call ξ
the displacement vector of the medium caused by the motion of
the wave and V the volume of a generic element of the medium
(particle). Now suppose that the medium is contained between
two rigid surfaces, that extend towards infinity along both the
x and the y axis without ever intersecting and that are one the
reflected image of the other (being x/y the plane of symme-
try). In the described scenario, the wave moves in a space that
is 3D but constrained on one axis (i.e., z); such a space can be
described by the scalar field D(x, y), which contains the eu-
clidean distance between the points of the two surfaces at the
same x, y coordinates. In other words, D describes the space in
terms of its depth along z.

If we choose to focus on a particle of volume V = dxdyD,
with dx and dy relatively small, ξ will only have x and y com-
ponents due to the presence of the enclosing surfaces. Conse-
quently, during the passage of the sound wave, the particle’s
volume change can be expressed as:

dV = (
∂Dξx
∂x

dx) dy + (
∂Dξy
∂y

dy) dx (1)

if ξ is quite small (reasonable assumption in a realistic sce-
nario) and D is slowly varying in space. The two products in
parentheses represent the first order Taylor Series approxima-
tions of the increment of ξ and D, on x and y respectively.
Hence, by choosing dx = dy = ds, the fractional volume
change can be written as:

dV

V
=

1

D
(
∂Dξx
∂x

+
∂Dξy
∂y

) (2)

If we describe the motion of the particle via Newton’s equa-
tion and we combine it with the equation of state p = −K dV

V
(where K is the bulk modulus of air), it is possible to prove the
following relationship between the displacement and the frac-
tional volume change just obtained:

∂2ξ

∂t2
=

c2

D
∇(

∂Dξx
∂x

+
∂Dξy
∂y

) (3)

with c defined as the speed of sound in air. Finally, by follow-
ing Fletcher and Rossing [10] and considering D independent
of time, we can obtain from Equation 3 the following acoustic
wave equation:

∂2p

∂t2
=

c2

D
(
∂

∂x
(D

∂p

∂x
) +

∂

∂y
(D

∂p

∂y
) ) (4)

where p is sound pressure. The equation describes air wave
motion in a 3D space constrained in one dimension; given the
similarity with the standard 2D acoustic wave equation, this 3D
space can be considered as an extended 2D (2.5D) space. By
symmetrically constraining the 2.5D space along the y dimen-
sion too (hence turning D into a circular area), and by assum-
ing plane-wave propagation only (due to large distance from the
source), Equation 4 reduces to Webster’s horn equation [11].

2.2. 2.5D FDTD Wave Solver

The procedure followed for the design of the 2.5D wave solver
shares many similarities with the case of the 2D vocal tract
model described in [9]. We decomposed the 2.5D acoustic wave
equation into extended versions of the 2D equation of continuity
and 2D equation of motion:

∂p

∂t
= −ρc

2

D
(
∂Dvx
∂x

+
∂Dvy
∂y

) (5)

β
∂v

∂t
+ (1− β)v = −β2∇p

ρ
+ (1− β)vb (6)

where v is the 2D acoustic particle velocity. Equation 6 does
not include any explicit dependence on the depth of the consid-
ered space (via D). This is due to the fact that the equation of
motion derives from Newton’s second law, whose 2D and 2.5D
forms coincide. However, similarly to what proposed by Allen
and Raghuvanshi [12], we augmented the obtained standard 2D
equation with the scalar field β(x, y, t). By varying between
1 and 0, this term allows for the transition between the mo-
mentum equation and the enforcement of a prescribed velocity
vb. Through this mechanism it is possible to enforce boundary
conditions (more details in the next paragraph) and to simulate
dynamic geometries [9].

We applied a standard 2D Yee scheme, where each grid
point consists of a squared 2D cell [12, 13]. Per each time step
n, pressure values p(n) are sampled across the whole domain
at the center of the cells, while the v(n)x and v(n)y components
of the velocity vectors are sampled on the edges shared with
the right and top neighbor cell respectively. Hence, in a generic
cell at discrete coordinates (x̂, ŷ), p will be sampled at (x̂, ŷ),
while vx at (x̂+ 1/2, ŷ) and vy at (x̂, ŷ + 1/2). This leads to
the following discrete update rules of Equations 5 and 6, where
we denote with ∇̃ the standard discrete spatial derivatives as
performed in 2D FDTD:

p(n+1) =
D̄p(n) − ρc2∆t ∇̃ · V (n)

D̄
(7)

v(n+1) =
βv(n) − β2∆t ∇̃p(n+1)/ρ + ∆t(1− β)vb

β + ∆t(1− β)
(8)

with:
V = ( D(x)vx, D(y)vy ) (9)

The terms D̄, D(x) and D(y) are the components of the
depth map of the 2.5D space and they effectively act as extra
impedance terms in two dimensions. Their relation with the
field D will be explained in detail in the next subsection.

In line with the work of Takemoto and Mokthari [1], the
vocal tract’s walls are simulated by adapting the local reactive
boundary approach originally proposed by Yokota et al. [14].
This is done by means of setting β = 0 and vb = ρc µ pwn,
with pw equal to the pressure value sampled from the cell in
front of the wall, n the unit vector normal to it and directed to-
wards the wall itself and µ the boundary admittance. Similarly,
arbitrary excitation can be injected into the domain via bound-
ary cells (i.e, β = 0), by setting vb equal to the output velocity
of a glottal model; this can be coupled with the vocal tract by
feeding back the pressure value of the cell in front of the exci-
tation velocity stream. Alike its 2D version [9], the 2.5D vocal
tract model allows for the coupling with both 1D [15, 16] and
2D glottal models [17].

2.3. Depth Map

The depth map is a discretized version of the continuous field
D, processed according to the described 2D scheme. Since ev-
ery individual FDTD cell holds three acoustic parameters sam-
pled in three different locations (center, right and top), the dis-
cretization of D will likewise produce three depth values per



each cell, namely D̄, D(x) and D(y). As a result, in the FDTD
grid the pressure values are aligned with D̄ values, while the
velocity vector components are aligned withD(x) andD(y) val-
ues.

In a practical scenario, the field D can be replaced by the
3D model of the geometry whose acoustics is being analyzed.
Even if typically composed of discrete elements (e.g., vertices),
the model can be treated as a continuous geometry via interpo-
lation. However,D always represents a symmetric domain; this
is not necessarily true for a 3D model, hence additional process-
ing is required to derive the depth map from it. In the case of a
generic 3D tube, the depth map is computed as follows:

1. a 2D contour is extracted as the intersection between the
tube and its mid-sagittal plane (i.e., 2D vocal tract ge-
ometry). The contour itself represents the vocal tract’s
walls, while the mid-sagittal plane becomes the x/y
plane of the 2.5D space;

2. in every wall cell, D̄, D(x) and D(y) are set to zero;

3. in every cell outside of the the tube’s walls, D̄, D(x) and
D(y) are assigned a fixed open space depth;

4. for every cell with discrete coordinates (x̂, ŷ) inside the
tube’s walls, the two lines perpendicular to the x/y plane
and passing by (x̂ + 1/2, ŷ) and (x̂, ŷ + 1/2) are in-
tersected with the model (Figure 1). The length of the
two resulting segments is assigned to D(x)(x̂, ŷ) and
D(y)(x̂, ŷ) respectively;

5. for every cell with discrete coordinates (x̂, ŷ) inside the
tube’s walls,D(x)(x̂, ŷ) andD(y)(x̂, ŷ) are interpolated
as (D(x)(x̂, ŷ)+Dx(x̂+1, ŷ) )/2 and (D(y)(x̂, ŷ)+
D(y)(x̂, ŷ + 1) )/2 respectively;

6. for every cell with discrete coordinates (x̂, ŷ) inside
the tube’s walls, the depth D̄(x̂, ŷ) is obtained as
( D(x)(x̂, ŷ) + D(x)(x̂ − 1, ŷ) + D(y)(x̂, ŷ) +
D(y)(x̂, ŷ − 1) )/4;

7. a minimum depth threshold is defined and applied in ev-
ery cell (depth values are clamped). A typical threshold
is at least an order of magnitude lower than the smallest
non-zero depth value found across the domain.

The result of this process is a single-axis symmetric equiv-
alent of the original 3D model. The cross-sections of such a
2.5D shape have same areas and widths (i.e., extension along
y) as the 3D model’s sections; moreover, their shapes can be
irregular, but always symmetric along z, as showed in Figure 1.

The interpolations at steps 5 and 6 are introduced to sat-
isfy the assumption that D is slowly varying in space, required
to obtain Equation 1 (Section 2.1). This enhances the overall
stability of the solver too.

2.4. Model Applicability

The development of the 2.5D vocal tract model is still in
progress, yet some of its features can be analyzed already.

The use of the depth map imposes to slightly change the
cross-sectional shapes of the original geometry by means of
single-axis symmetry. As a result, the acoustics of the 3D and of
the 2.5D vocal tracts will be somewhat different in the portion of
the spectrum that is beyond 5 kHz [3]. However, the 2.5D rep-
resentation is capable of preserving curvature on the x/y plane,
area progression as well as several details of the varying irregu-
lar cross-sectional shapes of real vocal tract geometries. These
are features beyond the capabilities of 1D and 2D models, and
whose combined acoustics effects are yet to be studied.

Figure 1: on the left, depth map extraction (D(x) solid line,
D(y) dashed line) from a slice C of an irregular tube, at co-
ordinate x = x̂ (for simplicity we assume the same shape at
x̂+ 1/2). On the right, equivalent single-axis symmetric cross-
section C′, as represented in the 2.5D FDTD.

At the current stage of development, using the 2.5D model
to analyze the acoustics of realistic vocal tracts is impractical
though. The model capitalizes on the solution of a lossless
system (Equations 5, 6). The solver adds wall impedance by
means of the 2D walls boundary condition (Section 2.2), but
the losses happening on the surface described by the depth map
(i.e., 2.5D boundaries) are largely ignored, as the extra depth-
related impedance terms D̄, D(x) and D(y) model only the ef-
fects of the surface’s spatial derivative1. In other words, there
is no consistent way of matching the non-planar modes of a
generic 3D shape.

This issue can be easily overcome for the modeling of 3D
tubes with circular cross-sections, which can also include bend-
ing. By extending the calculation of modes in plates proposed
by Fletcher and Rossing [10], it is possible to prove that non-
planar modes in each section of a lossless 2.5D tube are identi-
cal to the ones found in its 2D mid-sagittal cross-section. As
a result, we can apply the methodology proposed by Arnela
and Guasch [4] to match the first non-planar mode of a circular
cross-section, by scaling the radii of every section of the tube
by the constant factor 0.5π

1.84
and by modifying the depth map

accordingly.

3. Experiments and Results
3.1. Model Validation

A comparative study was carried out to validate the model’s
precision, by using as reference a high-accuracy 3D Finite Ele-
ment Method (FEM) [18]. To this end, we computed the trans-
fer functions of a set of vocal tract-like geometries, we extracted
the corresponding formants’ positions and compared them with
the results obtained with the 3D FEM. The study was carried
out for the following static vowels: /a/, /i/ and /u/. We chose to
construct the 3D tubes from Story’s area functions [19]. This
dataset defines a standard in vocal tracts’ acoustic analysis and
is ideal to work with circular cross-sections (see Section 2.4).

As further validation, we compared the model’s time per-
formance with two different versions of the same 2D FDTD: a
standard serial implementation (2DS), and a highly optimized
parallel implementation (2DP). Both the models were timed
while computing the transfer function of Story’s /u/. The target
of such comparisons was to estimate the extra computational
cost introduced by the depth terms, as well as the time boost
made possible by a parallel pipeline.

1This scenario is analogous to the case of Webster’s horn equation,
where the absolute size of the modeled tube does not affect propagation.



Figure 2: 2.5D tube discretization (mid-sagittal contour and
depth map) for vowel /a/.

3.2. Experimental Setup

The 2.5D FDTD acoustic wave solver was implemented in
MATLAB. The resolution of the FDTD grid was set to ∆s =
0.74 mm; this is the largest value that preserves the geometrical
details of the tubes and was determined empirically. Any reso-
lution above this threshold produces less accurate results. Fig-
ure 2 illustrates the resulting 2.5D tube geometry for vowel /a/.
We set the size of the grid to 270× 45 cells, to obtain a domain
that could fit any of the three tubes. The temporal resolution
∆t of the simulation is restricted by the Courant-Friedrichs-
Lewy condition in 2D, ∆t ≤ ∆s/

√
2c, where c is the speed

of sound (c = 350 m/s within the vocal tract). We therefore set
∆t = 1.51× 10−6 s, equal to a simulation rate of 661,500 Hz.

Air density was set to ρ = 1.14 kg/m2s and all wall cells
were assigned a standard boundary admittance µ = 0.005.
Since the 2.5D FDTD does not yet include a way to precisely
model the radiation losses, we implemented an open-end termi-
nation at the mouth opening by imposing a Dirichlet boundary
condition in the same fashion of what done in [4]. Following the
procedure described in [9], the impulse responses were obtained
by exciting the model with a band-passed velocity pulse injected
from the glottal end; the pressure variation was recorded via a
microphone placed 3 mm inside the mouth opening, keeping
track of computational times. Per each vocal tract, the MAT-
LAB solver serially iterated across the full grid to simulate a
total of 50 ms of audio. The application ran on a workstation
equipped with an Intel Core i7-8700K processor.

The same parameters were maintained also for the 2DS and
the 2DP, but all the depth-related impedance terms were re-
moved from their solvers2. Furthermore, while the 2DS was im-
plemented in MATLAB, the 2DP was implemented as a shader
as described in [9] and ran on a Nvidia GTX 1080 graphics card.

3.3. Results

We applied the Fast Fourier Transform to the impulse responses
to obtain the vocal tracts’ transfer functions for the three vow-
els. The positions of the first 8 formants were extracted and
compared with the results of the 3D FEM approach. The exact
formants’ positions for the 3D FEM can be found in Arnela’s
PhD dissertation [20]. Table 1 shows the formants’ positional
differences and the percentage error between the 2D and the
3D simulation results for /a/, /i/ and /u/ respectively. For each
vowel, the 2.5D run-time for producing 50 ms of audio was 15
minutes and 21 seconds; for the 2DS it was 14 minutes and 41
seconds, while for the 2DP 1.4 seconds.

2These settings produce incorrect 2D formants. Yet, the 2D models
were used for time comparisons only and their output was ignored.

Formants /a/ /i/ /u/

F1 4Hz
0.57%

-3Hz
-1.14%

1Hz
0.38%

F2 -28Hz
-2.62%

49Hz
2.32%

-37Hz
-4.88%

F3 -11Hz
-0.36%

50Hz
1.66%

36Hz
1.59%

F4 56Hz
1.37%

82Hz
1.98%

17Hz
0.47%

F5 -59Hz
-1.17%

1Hz
0.01%

107Hz
2.56%

F6 -23Hz
-0.40%

-13Hz
-0.22%

-102Hz
-2.01%

F7 -5Hz
-0.07%

-95Hz
-1.44%

-46Hz
-0.75%

F8 25Hz
0.32%

35Hz
0.45%

26Hz
0.39%

Table 1: positional errors of the first 8 formants in 2.5D, com-
puted for vowel /a/, /i/, and /u/ with respect to 3D FEM values.

4. Discussion and Conclusion
The acoustic analysis of vowels’ area functions is a standard
validation methodology that allows to test the fundamental
properties of a wave propagation model. In the case of the 2.5
FDTD, all the three vowels are characterized by positional er-
rors that tend to stay below 2%, and in several cases do not
go above 1%. To achieve comparable results, a standard 2D
FDTD requires a spatial resolution that is almost three times
higher than the value used in this test [9]. Such a level of ac-
curacy suggests that 2.5D equations are a valid means to model
how waves travel in a constrained space, and that the proposed
solver is correct. Furthermore, the affordable spatial resolution
remarkably decreases the computational load of the simulation
compared to 2D models’ massive grids [4, 7, 9].

The current serial MATLAB implementation of the 2.5D
FDTD proves to be extremely lightweight, even when compared
with the performance of the equally-sized 2DS. The time differ-
ence between the two systems is 20 s (2%); this value is quite
small and derives from the fact that the instruction sets of the
2.5D and 2DS solvers differ by four multiplications only (see
[9]). Given the similar computational load of the two systems,
it is safe to assume that an optimized parallel implementation of
the 2.5D running on a modern graphics card will reach quasi-
real-time performance, close to what achieved with the 2DP.

These results gain particular interest in the context of the
future development of the 2.5D vocal tract model. We are cur-
rently working on the inclusion of free-radiation effects (via
2.5D perfect matching layers) and on the validation of the mod-
eling of the vocal tract’s curvature. The inclusion of these fea-
tures is relatively straightforward and will make the system ca-
pable of simulating geometrical and acoustic details still un-
available in one-dimensional and 2D models. The following
step will consist of the introduction in the acoustic equations of
extra loss terms, to model 2.5D boundaries. By doing so, it will
be possible to simulate the effects of varying irregular cross-
sections, thus fully exploring the potential of the 2.5D model.
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