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Abstract
Our goal is to separate out speaking style from speaker

identity in utterance-level representations of speech such as i-
vectors and x-vectors. We first show that both i-vectors and
x-vectors contain information not only about speaker but also
about speaking style (for one data set) or emotion (for another
data set), even when projected into a low-dimensional space.
To disentangle these factors, we use an autoencoder in which
the latent space is split into two subspaces. The entangled in-
formation about speaker and style/emotion is pushed apart by
the use of auxiliary classifiers that take one of the two latent
subspaces as input and that are jointly learned with the autoen-
coder. We evaluate how well the latent subspaces separate the
factors by using them as input to separate style/emotion classifi-
cation tasks. In traditional speaker identification tasks, speaker-
invariant characteristics are factorized from channel and then
the channel information is ignored. Our results suggest that this
so-called channel may contain exploitable information, which
we refer to as style factors. Finally, we propose future work to
use information theory to formalize style factors in the context
of speaker identity.
Index Terms: speaking style, emotion recognition, speech dis-
entanglement, speaker recognition

1. Introduction
Speaker embeddings, such as i-vectors and x-vectors, that have
been originally designed to perform well in speaker identifica-
tion tasks also contain information about speaking style and
emotion. They are optimized to model speaker identity for
tasks such as speaker recognition, speaker verification, and
speaker diarization. These vectors maximize the variance be-
tween speakers, while minimizing within-speaker differences
(recording device, mood, age, etc) [1]. We show that style and
emotion information can be found within those same utterance-
level speaker embeddings. Our ultimate goal is to develop a
framework that can separate style, channel and speaker infor-
mation because different factors of the speech signal could then
be exploited for different uses, for example in speech synthesis.

In the process of training high-quality speaker embeddings,
one necessary step is to separate speaker-invariant character-
istics from residual channel information. The channel infor-
mation contains factors related to the recording device and
session noise and is removed to address differences such as
the mismatch between microphone and low-quality telephony
speech. The final speaker embeddings thus discard channel in-
formation and retain speaker-invariant characteristics. In both
i-vectors and x-vectors, the channel factorization is performed
during Probabilistic Linear Discriminant Analysis (PLDA). In
this work, we therefore utilize the utterance-level representa-
tions obtained before PLDA.

This paper adopts a working definition of style to be: how
speakers adapt their speaking manner according to the speak-
ing context. In this work we investigate four categories of

speaking style: spontaneous conversation, goal-directed inter-
action, retold passage, and read passage. In separate experi-
ments on other data, we also explore four basic categories of
emotion: angry, happy, sad, and neutral. This paper makes
three main contributions. First, to show that utterance-level i-
vectors and x-vectors contain information about speaking style
and emotion. Second, to compare disentanglement methods,
evaluated using accuracy on a classification task. Finally, we
demonstrate that both style and residual information are neces-
sary components of utterance-level speaker embeddings in or-
der to minimize reconstruction error.

There is some evidence that i-vectors discriminate emotion
in speech [2]. We believe the information is found within the
channel factor; therefore x-vectors will also contain it. It con-
sists of structure and content that correlates to meaningful cate-
gories of style and emotion, which we refer to as style factors.

2. Related Work
2.1. Speaking Style

There are systematic and measurable differences when a
speaker expresses a particular emotion or speaks in a par-
ticular context. Two well-studied contexts include read and
spontaneous speech. For example, differences were found be-
tween news broadcast speech and freestyle conversations and
these differences include intonation patterns (F0) and speaking
rate [3]. Previous work has shown that content words are more
likely to carry marked pitch accents in spontaneous speech than
in read speech [4]. On the other hand, there are fewer pitch ac-
cents overall in spontaneous speech and dialect does not seem
to influence variation as much as the speaking style [5].

Importantly, speaker-dependent style modeling does not ap-
pear to improve pitch accent modeling and a more general ap-
proach to style modeling is recommended [4]. Work from [6]
showed that sequential modeling of symbolic prosodic annota-
tions (TOBI) can differentiate between four different speaking
styles better than direct modeling of signal-level features (such
as F0). The four speaking styles included: broadcast news,
spontaneous monologues, read monologues, and interactive di-
alogue. [7] first showed that GMM supervectors can be used to
classify consecutive utterances of spontaneous and read speech
with > 95% accuracy, independently of any knowledge about
speaker identity. Their use of GMM supervectors aligns to our
work in this paper because GMM supervectors form the basis
for i-vectors, one of the embedding types we explore. All this
prior work suggests it is possible to arrive at a canonical repre-
sentation of speaking style, and has influenced the approach we
take here. Our work extends to x-vectors, and we also explore
additional categories of style and emotion.

2.2. Expressive Speech Synthesis

Expressive speech synthesis is one application that benefits
from robust representations of style and emotion. Recent work



in this area has explored using textual cues for determining par-
alinguistic style [8, 9] as well as using held-out labeled data to
drive controllability [10]. Recently [9] introduced a method to
construct and apply style tokens in an effort to model style and
speaking rate. These tokens, which are essentially learned em-
beddings, represent a set of discovered latent styles in speech
data rather than human-labeled categories. The final style em-
beddings are not convincingly categorical to listeners. Further,
as in [11], there is an underlying assumption that style tokens
can be learned directly from features that have been extracted
from the speech signal, such as F0, and this is somewhat con-
tradictory to other work that calls for higher-level abstract rep-
resentations.

Others have explored abstract representations for expres-
sive speech synthesis, including [2] who showed that i-vectors
can form unsupervised clusters corresponding to emotion cat-
egories. They showed that i-vectors can be utilized for ex-
pressive synthesis. However, this approach did not remove
speaker-invariant characteristics, making it difficult to control
both speaker identity and emotion at the same time. Autore-
gressive models for expressive speech synthesis were explored
in [12] using variational autoencoders (VAEs) with VoiceLoop,
but they were unable to model global characteristics of style,
possibly due to the approach being unsupervised.

2.3. Speaker Identification

This paper explores two types of utterance-level speaker em-
beddings from the field of speaker identification: i-vectors [13]
and x-vectors [14]. Both are considered the state-of-the-art for
automatic speaker recognition and continue to be fine-tuned
and adapted for speech processing tasks [15, 16, 17, 18]. x-
vectors claim improvement over i-vectors in part because they
do not rely on content information during training [19]. Both of
these speaker embeddings are evaluated with Probabilistic La-
tent Discriminant Analysis (PLDA) [20]. That is where chan-
nel and session residual information is separated from speaker-
invariant characteristics.

3. Datasets
3.1. IViE

The Intonational Variations in English (IViE) corpus was orig-
inally collected for the purpose of exploring 9 regional/dialect
variations throughout the United Kingdom [21]. From the set
of parallel tasks, we have selected four style categories: sponta-
neous conversation, goal-directed interaction, retold passages,
and read passages. Each of the speakers is approximately 16
years old, and the collection was split evenly between males and
females. We disregarded dialect and gender labels, instead fo-
cusing only on these four style categories. For the spontaneous
conversation and goal-directed interaction categories the audio
was not diarized so we combined both speaker labels together
and set the label as the first speaker. The spontaneous conver-
sation category used same-gender pairs who discussed the topic
of cigarette smoking. The goal-directed interaction involved a
version of the conventional map-task (i.e. providing directions
while reading a map). The retold and read passages involved
an excerpt from the story Cinderella1. A description of the data
split, number of unique speakers, and average utterance dura-
tion (in seconds) is provided in Table 1.

1http://www.phon.ox.ac.uk/files/apps/IViE/
stimuli.php

Train Valid Test S dur(s)

IE
M

O
C

A
P Angry 318 56 125 10 4.8

Sad 269 48 106 10 5.6
Happy 60 10 23 10 5.0
Neutral 247 44 97 10 4.4
Totals 894 158 351 10 4.9

IV
iE

Conv. 210 37 82 108 50
Directed 426 75 168 112 31
Retold 558 99 219 110 27
Read 431 76 169 110 44
Totals 1625 287 638 112 38

Table 1: Number of utterances for IEMOCAP and IViE datasets,
where S is the number of unique speakers in the category, and
dur is the average duration of audio segments in seconds.

3.2. IEMOCAP

We also used the IEMOCAP dataset [22] for emotion cate-
gories. 10 professional actors were prompted to enact hypothet-
ical situations or to read directly from a script while performing
emotions. Although this dataset is multimodal (speech, video,
head movements, transcription, etc), we only use the audio. The
data annotation and labeling procedure allowed utterances to
have multiple labels, so we identified a subset of four emotions
wherein the utterances had only one label. Our subset contains:
anger, sadness, happiness and neutral. More details about the
data split is provided in Table 1. While this significantly re-
duced the overall size of our data, it circumvented issues of label
reliability from the annotators. We used the IEMOCAP dataset
to make a comparison to previous works in our separate classifi-
cation task. Recently [23] achieved 68.8% overall classification
accuracy working directly on the speech spectrograms. We did
not have information about their train/test split, so although our
classifier exceeded this baseline it could be due to differences
in training sets and labels.

4. Methodology
We project utterance-level embeddings into a pair of latent
spaces. One is intended to contain only style (or emotion) in-
formation, and the other to contain no style (or emotion) infor-
mation. To quantify how disentangled the latent spaces are, we
use them as input to a style (or emotion) classifier, and exam-
ine how high or low the accuracy is. To further demonstrate
that the two latent spaces contain complementary information,
we perform reconstruction experiments wherein the latent space
containing no style (or emotion) has been degraded. If one
latent space has been degraded and the autoencoder is unable
to reconstruct the input, then we know the two latent spaces
contain complimentary information. Our code can be found at
https://github.com/rhoposit/style_factors

4.1. Utterance-Level Embeddings

We used the Kaldi Toolkit [24] to extract utterance-level i-
vectors and x-vectors. We employed the pre-trained models2

described in [14], which provided us with PLDA, mean vectors,
and transform vectors which had been trained and evaluated
on the VoxCeleb corpus. That corpus contains approximately
2,000 unique celebrity speakers [25, 26] and was augmented
with noise during training. The VoxCeleb data is considered

2http://kaldi-asr.org/models/m7



spontaneous and ‘in the wild’ and it is also known to exhibit nat-
ural emotion [27]. The front-end configuration was provided to
us fully-specified with the following settings. The audio signal
sampling rate was 16 kHz and the frame length was 25 ms. For
feature-level vocal-tract length normalization (VTLN), the the
low-frequency cutoff was 20 Hz and the high-frequency cutoff
was 7600 Hz. The features were 24 MFCCs for i-vectors and 30
MFCCs for x-vectors. The number of mel-cepstrum filterbank
bins was 30. The features were mean-normalized over a sliding
window up to 3 seconds.

The internal contents of these utterance-level embeddings
come from DNNs. For x-vectors it is the first segment layer after
frame-level statistics pooling, where each utterance-level vector
is 1x512. The non-linearities during training come from ReLU
activation. The i-vectors come from DNN phonetic bottleneck
features of a time-delay neural network (TDNN) with p-norm
activations where each utterance-level vector is 1x400 [19].

4.2. Dimensionality Reduction

As a point of comparison for the later disentangled la-
tent spaces, we wanted to know to what extent the i-
vector and x-vector utterance embeddings could be compressed
while retaining style (or emotion) information. Using ei-
ther PCA or the vanilla autoencoder of Figure 1, we pro-
jected the embeddings into latent spaces of dimension dims =
[512, 400, 300, 200, 100, 50, 20, 10], omitting 512-dim when
using i-vectors. All such autoencoders consisted of four fully-
connected dense layers for the encoder and four fully-connected
dense layers for the decoder with the same training parameters
as our DNN classifier: ReLU activation [28], L2 regulariza-
tion [29], Adam optimizer [30] with learning rate lr = 0.0002,
and early-stopping monitored by validation loss. The input was
normalized.

Figure 1: Vanilla autoencoder (AEV)

4.3. Disentanglement

We propose the autoencoder with two encoders and two auxil-
iary classifiers shown in Figure 2. The z1 and z2 latent spaces
have separate auxiliary classifiers. To cause z1 to encode style,
its auxiliary style classifier is trained to minimize cross-entropy
loss. First we established a baseline autoencoder using two la-
tent spaces (AE1) and similar auxiliary classifiers, shown in
Figure 2. To cause the residual latent space z2 to contain as
little style information as possible, we experimented with vari-
ants including resetting the z2 space to the batch mean (AE2),
maximizing the auxiliary classifier cross-entropy loss (AE3), or
completely degrading the z2 space and re-training the decoder
(AEC). When we used maximized cross-entropy loss on the
residual z2 auxiliary classifier, we adjust that task loss weight
to w = 0.05 as this value helped balance the weight of all the
losses, though we acknowledge that setting optimal loss weights
is itself an open problem in multi-task learning. A description
of the set of autoencoder configurations is presented in Table 2.

It is worth noting that we had explored additional autoencoders,
for example with and without a split latent space, but for this
paper we selected those which had highest z1 classification and
demonstrate z1 and z2 are both needed for reconstruction.

Num z2 Max
Technique Encoders Corruption Loss

PCA – – no
AEV 1 – no
AE1 2 – no
AE2 2 µ batch no
AE3 2 – yes
AEC 2 full yes

Table 2: Description of disentanglement methods. PCA and
AEV do not attempt disentanglement are used for comparison.

Figure 2: Autoencoder with dual-encoders and single decoder

4.4. Style / Emotion Classification

Entirely distinct from the autoencoders, we trained DNN style
(or emotion) classifiers using the Keras library [31] with Ten-
sorFlow backend [32]. We used the same train/test split as de-
scribed in Table 1. This DNN consisted of three fully-connected
dense layers with ReLU activation (alpha = 0.2) and L2 regu-
larization (L2 = 0.0001). The optimizer was Adam with learn-
ing rate set to lr = 0.0002 and the remaining parameters were
kept as default. The loss function was cross-entropy with early
stopping. The input was normalized. We first trained the clas-
sifier to use raw i-vectors or x-vectors. Later we used the com-
pressed representations from PCA or the vanilla autoencoder.
Finally we used the disentangled latent spaces z1 or z2 pro-
vided by the dual autoencoder. In each case, a style (or emotion)
classifier was trained from scratch.

5. Experiments and Results
5.1. Autoencoder Reconstruction Loss

One demonstration of disentanglement is to examine the abil-
ity to reconstruct the original input i-vector or x-vector from the
latent space. As a reconstruction baseline, we calculated an av-
erage i-vector or x-vector over the training data and compared it
to each training example to calculate the upper bound mean ab-
solute error (MAE). Any MAE values above this bound indicate
that the autoencoder reconstruction is very poor. The upper-
bound baseline MAE for i-vectors was 0.75 for both IEMOCAP



Figure 3: Classification accuracy results before disentanglement (top) and after (bottom), with benchmarks constant for comparison.
The benchmarks use raw i-vectors or x-vectors respectively as input and are shown in the plots as a constant horizontal line indicating
classification accuracy without any compression or disentanglement. On IViE: 79% and 78%. For IEMOCAP: 76% and 82%.

and IViE datasets. For x-vectors it was 0.62 for IEMOCAP
and 0.63 for IViE. The MAE upper bound was exceeded with
x-vectors when using the AEC model on the IViE data (MAE
> 0.64). The MAE upper bound was approached and exceeded
for the IEMOCAP data for both types of input vectors. High
reconstruction error when z2 is corrupt indicates that both z1
and z2 components are needed. That is, they contain comple-
mentary – or disentangled – information.

5.2. Style / Emotion Classification Results

Our other demonstration of disentanglement was to use each of
z1 and z2 in turn as the input to style (or emotion) classifiers
described in Section 4.4. We report results for classification on
held-out data in Figure 3. The upper set of plots in (a, b, e, f
in Figure 3) show classification accuracy for methods that do
not uniquely disentangle style in the z1 and z2 latent spaces.
The bottom set of plots (c, d, g, h Figure 3) show classification
accuracy for methods that were successful in isolating factors
of style in z1 from residual in z2. Overall, the z2 space has lost
information about style and emotion. On the other hand, the z1
space has preserved it through the range of latent dimensions,
while continuing to perform close to benchmark. The overall
best classification accuracy came from AE3.

In Figure 4 we show the confusion matrix for each dataset.
These results are for the best-performing disentangled z1 en-
codings from AE3. The encoding size for IViE i-vectors was
50-dim, and for x-vectors was 100-dim. In the IViE style pre-
diction tasks, we noticed that spontaneous conversation was of-
ten mistaken as retold speech. This may be a consequence of
using non-diarized conversational speech although it did not
seem to affect the goal-directed speech style which was also
not diarized. The encoding size for IEMOCAP i-vectors was
300-dim, and x-vectors was 400-dim. The poor performance on
‘happy’ is related to class imbalance, similar to previous work
[10] and is often identified as ‘sad’ or ‘neutral’.

Further we compared how well the style factors in z1 and
the residual in z2 retained speaker identifying information in
an ad-hoc speaker PLDA evaluation. The original extracted
i-vectors and x-vectors for IViE data discriminated speakers
with below 10% equal-error-rate (EER) while for IEMOCAP
the EER was above 30% EER. For all of the z1 and z2 rep-

resentations in both datasets, the EER was always greater than
30%. This suggests speaker information was lost while style
information was preserved.

Figure 4: Confusion matrices for per-category classification
with IViE (top) and IEMOCAP (bottom).

6. Discussion
We have demonstrated that two types of utterance-level repre-
sentation invented for speaker identification, i-vectors and x-
vectors, contain information that is predictive of style and emo-
tion. This finding suggests the existence of style factors that
are separate from channel and other speaker-invariant charac-
teristics. Disentangling such factors would be highly useful in
many speech applications including speech-to-speech transla-
tion, speech synthesis, and speaker identification.
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