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Abstract
With increased use of text-to-speech (TTS) systems in real-

world applications, evaluating how such systems influence the
human cognitive processing system becomes important. Partic-
ularly in situations where cognitive load is high, there may be
negative implications such as fatigue. For example, noisy sit-
uations generally require the listener to exert increased mental
effort. A better understanding of this could eventually suggest
new ways of generating synthetic speech that demands low cog-
nitive load. In our previous study, pupil dilation was used as an
index of cognitive effort. Pupil dilation was shown to be sen-
sitive to the quality of synthetic speech, but there were some
uncertainties regarding exactly what was being measured. The
current study resolves some of those uncertainties. Addition-
ally, we investigate how the pupil dilates when listening to syn-
thetic speech in the presence of speech-shaped noise. Our re-
sults show that, in quiet listening conditions, pupil dilation does
not reflect listening effort but rather attention and engagement.
In noisy conditions, increased pupil dilation indicates that lis-
tening effort increases as signal-to-noise ratio decreases, under
all conditions tested.
Index Terms: text-to-speech, cognitive load, pupillometry, ad-
verse conditions

1. Introduction
Evaluation methods have remained much the same for text-to-
speech synthesis despite increasingly-diverse real-world appli-
cations. This is concerning: there may be potential negative
implications when listening to synthetic speech, especially in
adverse conditions. Specifically, evaluation methods generally
fail to consider the cognitive load imposed by listening to syn-
thetic speech.

[1] compared listening effort across different speech types
in the presence of speech-shaped noise, showing that synthetic
speech demanded the greatest effort even at favourable signal-
to-noise ratios. This highlights the impact synthetic speech has
on the human cognitive processing system. It is necessary to
better understand these impacts and eventually to develop syn-
thetic speech that imposes a lower load on listeners.

In our previous study [2], we used pupillometry to measure
the cognitive load of synthetic speech. The choice of pupillom-
etry was motivated by several studies that consistently showed
a correlation between pupil dilation and the mental effort re-
quired to carry out a specific task [3, 4, 5, 6, 7]. The results
in [2] showed that pupil dilation was sensitive to the quality of
synthetic speech. Differences were observed between natural
speech and synthetic speech whilst differences between several
speech synthesizers were much more difficult to detect.

It was not possible to tell whether cognitive load (CL) truly
was equivalent across all TTS systems compared, or whether
the task was not cognitively demanding enough (due to listening
in quiet). Furthermore, ANOVA with repeated measures was
used as the primary statistical test. According to Mirman [8],
tests such as ANOVA are not well-suited for time-series data,
whilst tests such as growth curve analysis (GCA) offer advan-
tages for time-series data. With GCA the entire time-course of
the data is analysed as opposed to binned data used in ANOVA
that results in a lot of meaningful information being lost.

To address these concerns, we re-analyse experiment 3 from
[2] using growth curve analysis. This is experiment 1 in this
paper. The results are then compared with two new experi-
ments involving listening to synthetic speech in the presence
of speech-shaped noise: experiments 2 and 3 in this paper.

2. Experimental Design
2.1. Participants and Speech Material

30 native English speakers with no self-reported hearing prob-
lems, age 19 to 37 years, were recruited and divided evenly be-
tween experiments 2 and 3.

We used sentences generated by four synthesizers taken
from the 2011 Blizzard Challenge [9] and natural versions from
the same speaker. The synthesizers are: Hybrid, Unit Selec-
tion (US), Hidden Markov Model (HMM) and Low-Quality
HMM (LQ-HMM). All were created from the same 16.6 hours
of speech from a English female professional speaker with US
accent. Since we wish to measure cognitive load of synthetic
speech for real applications, meaningful sentences are used in
all experiments, taken from the Glasgow Herald newspaper.

As in [2], stimuli were blocked by system, resulting in 5
blocks, each containing 20 sentences. The block order was bal-
anced using a 5x5 Latin square design to ensure all listeners,
systems and sentences were equally represented. At the end of
each block, self-reported cognitive load, motivation to listen,
and naturalness scores were collected on 5-point rating scales.

2.2. Experimental set-up

The set-up of this experiment is the same as [2]. To summa-
rize: the speech stimuli described earlier were played to listen-
ers through headphones in a noise- and light-controlled room.
Simultaneously, pupil size was monitored using an eye tracker.
All stimuli were mixed with speech-shaped noise at signal-to-
noise ratios (SNRs) -1dB and -3dB, chosen such that the cogni-
tive effort is increased whilst intelligibility remains close to ceil-
ing. In accordance with the estimated psychometric function in
[10] which related keyword scores to SNR for speech-shaped
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Table 1: Summary of interpretation of each time term in GCA
Formula: ERPD ˜(time1 + time2 + time3) * CONDITION +
(time1 + time2 + time3 |SUBJECT) + (time1 + time2 + time3
|ITEM + (time1 + time2 + time3 |GROUP)

Term Interpretation

Intercept Overall mean pupil dilation
Linear (time1) Overall rate of pupil dilation
Quadratic (time2) Shape of peak
Cubic (time3) Falling slope

noise, the expected keyword correct percentages at -1dB and
-3dB are approximately 80% and 60% respectively. For com-
parison, in [1], the TTS condition at -5dB SNR was too difficult.

The procedure described in [2] was followed exactly in
terms of structure, presentation and data collection.

2.3. Pre-processing and analysis

After data collection, improvements to pre-processing and anal-
ysis were made by following the guidelines in [11]. The mean
and standard deviations (SD) of the pupil size, from 1 second
before sentence onset (baseline) until the start of the verbal re-
sponse, were calculated. Pupil size values more or less than
2 SD to the mean were coded as blinks or artifacts. If total
blink duration was more than 20% of the trial, or an individ-
ual blink was longer than 300ms, that trial was excluded. For
retained trials, blinks were removed using linear interpolation
using a window from 50 samples before the detected blink until
80 samples after. After deblinking, the data were downsampled
to 50Hz for faster processing. Subsequently, the Event Related
Pupil Dilation (ERPD) was computed. This was calculated us-
ing the equation in [12].

GCA was used to analyze the time course of the ERPD
within a specific time period in which the peak was observed.
The overall time course of the data was captured using a second-
order (quadratic) or third-order (cubic) orthogonal polynomial
with fixed effects of condition (various synthesizers) on all time
terms. The participant, group (with respect to the Latin square
design) and item (sentence stimulus) were used as random ef-
fects on all time terms. Post-hoc tests were performed by chang-
ing the baseline condition and cycling through each of the five
conditions to get comparisons across all conditions for each
time term. Table 1 summarizes what each time term represents.
Statistical significance (p-values) for individual parameter esti-
mates were assessed using the normal approximation (i.e., treat-
ing the t-value as a z-value). All analyses were carried out in R.

3. Results
3.1. Experiment 1: Quiet condition

The results for the quiet condition are obtained by re-analysis
of the raw pupil data collected for Experiment 3 in [2] and are
presented in Figure 1, which looks slightly different from Fig-
ure 6 in [2]. ERPD is now plotted on the y-axis and only tri-
als with word-error-rate (WER) less than 10% were included
in the analysis. Although 0% WER is expected in quiet condi-
tions, with synthetic speech of poor quality this isn’t feasible:
too much data would be discarded under such a strict criterion.
The improvements in analysis explained in the previous section
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Figure 1: Quiet condition: ERPD % change from the base-
line across all participants and conditions. Dotted: Raw data,
Solid: Quadratic Model fit
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Figure 2: Quiet condition: Self-reported measures

were made1. Two participants were excluded from the analy-
sis as more than 50% of their trials were discarded during pre-
processing.

The raw data and GCA model fit are shown in Figure 1. The
quadratic model provided a fairly good fit to the data. There
was a significant effect of condition on the intercept, linear and
quadratic terms. The intercept and linear term was significantly
different for all conditions(p≤0.05 for all comparisons). Sig-
nificant differences in the quadratic term were found only for
the Natural and Hybrid condition. The estimates are shown in
Table 2. Hybrid has a significantly sharper peak than all other
conditions. Natural is significantly flatter in peak in comparison
to all other conditions. Self-reported measures are presented in
Figure 2.

3.2. Experiment 2: Noise at -1dB SNR

In this experiment, trials with WER ≥ 20% were excluded. As
mentioned earlier, the expected intelligibility level estimated
from the psychometric curve in [10] was 80%. One participant
was excluded from the analysis as more than 50% of their trials
were discarded during pre-processing.

The raw data and GCA cubic model fit are shown in Fig-
ure 3. The cubic model fitted the data much better than the
quadratic model and a significant improvement in all time terms
were found when model comparison was performed. The cubic
model fitted relatively well for all the synthetic speech condi-

1Whilst improving the analysis, we discovered a minor error in the
previous analysis. This has now been fixed and thus Figure 1 in this
paper replaces Figure 6 in [2]
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Table 2: Summary of estimates of quadratic term (time2) for
all statistically significant conditions (p ≤ 0.05) for the quiet
condition. (Top) Baseline: Natural, (Bottom) Baseline: Natural

Conditions Estimate Standard Error

time2:Natural -8.93 5.57
time2:HMM -20.68 2.17
time2:Hybrid -25.56 2.14
time2:LQ-HMM -20.07 2.24
time2:Unit Selection -16.94 2.24
time2:Hybrid -34.49 5.54
time2:HMM 4.88 2.12
time2:Natural 25.56 2.14
time2:LQ-HMM 5.48 2.18
time2:Unit Selection 8.62 2.18
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Figure 3: -1dB SNR: ERPD % change from the baseline across
all participants and conditions

tions but is slightly under-fit for the Natural condition. Nev-
ertheless, the natural condition had more of a linear shape and
the behaviour in the response differs significantly to all other
conditions. There was a significant effect of condition on the
intercept term for almost all comparisons. LQ-HMM and US
were the the only pair which did not differ to each other in in-
tercept. In the linear term, all comparisons were statistically
significant except the Hybrid and Natural pair. Hybrid and Nat-
ural have a less steep slope compared to all other conditions. In
the quadratic term, Natural and HMM were the only conditions
that were significantly different to all other conditions. In the
cubic term, only LQ-HMM is statistically different to all other
conditions. This is evident in the way the LQ-HMM returns to
baseline. The quadratic estimates in Table 3 shows that HMM
has the sharpest peak and Natural has the flattest. LQ-HMM,
Hybrid and US are similar in peak shape. Self-reported mea-
sures are presented in Figure 4.

3.3. Experiment 3: Noise at -3dB SNR

In this experiment, trials with WER ≥ 40% were excluded to
correspond with an intelligibility level of at least 60%. Two
participants were excluded from the analysis as more than 50%
of their trials were discarded during pre-processing.

The raw data and GCA cubic model fits are shown in Fig-
ure 5. The cubic model fitted the data much better than the
quadratic model and a significant improvement in all time terms
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Figure 4: -1dB SNR: Self-reported measures

Table 3: Summary of estimates of quadratic term (time2) for
all statistically significant conditions (p ≤ 0.05) for the -1dB
condition. Baseline: HMM

Conditions Estimate Standard Error

time2:HMM -12.79 2.76
time2:Hybrid 4.73 1.84
time2:Natural 11.84 1.79
time2:LQ-HMM 5.04 1.76
time2:Unit Selection 5.27 1.93

were found when model comparison was performed. The cubic
model fits the data almost perfectly. There was a significant
effect of condition on the intercept term for almost all compar-
isons. LQ-HMM and Natural and LQ-HMM and US pairs did
not differ in intercept. In the linear term, all comparisons were
statistically significant except the Hybrid and HMM pair. This
indicates these two conditions were equivalent in slope. In the
quadratic term, all comparisons were statistically different to
each other except the Hybrid and LQ-HMM pair. In the cubic
term, only Hybrid and LQ-HMM pair were found to statisti-
cally different. The quadratic estimates in Table 4 show that US
has the sharpest peak followed by HMM, LQ-HMM, Hybrid
and then Natural with the flattest peak. This ordering suggests
that as quality deteriorates, the flatter the peak becomes. Self-
reported measures are presented in Figure 6.

4. Discussion
Listening to synthetic speech in quiet

Using GCA, Hybrid had the highest ERPD and the sharpest
peak, whilst the natural condition had the lowest ERPD and flat-
test peak. This result for Natural is as expected: not much cog-
nitive effort is exerted when listening to natural speech in quiet
conditions [13]. An interesting observation is that the order of
the peaks for the synthetic speech conditions show an inverse
trend to what was reported in the self-report measures in Fig-
ure 2. Self-reported CL increases as quality decreases but peak
pupil dilation appears to decrease. If cognitive effort is what we
are measuring the reverse should be observed and the Hybrid
system should be the lowest. Furthermore, the LQ-HMM condi-
tion was specifically selected due to its poor quality; since it did
not induce the greatest pupil response, this raises a red flag. We
firmly believe that listening effort is not being measured here,
but rather attention. Pupillometry studies with degraded signals
show that intelligibility declines with greater degradation, and
greater loss of quality leads to increased pupil dilation [14, 15].
However, when high quality degraded speech is compared to
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Figure 5: -3dB SNR: ERPD % change from the baseline across
all participants and conditions Dotted: Raw data, Solid: Cubic
Model fit
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Figure 6: -3dB SNR: Self-reported measures

natural speech (i.e. intelligibility does not differ) then degraded
signals elicit a relatively smaller pupil dilation. It appears that
degraded signals appear to obscure acoustic cues, which engage
attention in the processing of natural speech [12]. Similarly, in
our work as the quality of synthetic speech increased, pupil di-
lation was smaller and thus listeners were probably more en-
gaged. Additionally, the change in ERPD in the quiet condition
in general exceeds the change in ERPD in the noise conditions
as shown in Figure 7. We know for certain that listening in noise
is harder than quiet, yet the ERPD is greater in quiet. Therefore,
if cognitive effort isn’t being measured, the only reasonable ex-
planation is that engaged attention is measured. In quiet condi-
tions, a greater pupil response is therefore more favourable.
Listening to synthetic speech in noise
In the easier SNR condition, the Natural condition has the low-
est peak pupil response, in line with natural speech being less
cognitively demanding than synthetic speech even in adverse
conditions. In terms of slope, Hybrid and Natural reach peak
pupil dilation with similar steepness. They both have the lowest
ERPD and also have the lowest self-reported CL scores com-
pared to all other conditions in Figure 4. Based on these results,
Hybrid and Natural appear to impose the lowest load on the lis-
tener. Natural speech however differs to all synthetic conditions
in peak shape, which is found to be the flattest. On the other
hand, the HMM condition has the highest ERPD and has the
sharpest peak according to the statistics. But, HMM, US and
LQ-HMM are all perceived with similar self-reported load. Un-
der adverse conditions, the poor quality systems become more
difficult to separate. In the cubic term, LQ-HMM was the only
condition to differ to all other conditions. It also scored the low-

Table 4: Summary of estimates of quadratic term pairs which
were statistically significant (p ≤ 0.05) for the -3dB condition.
Baseline: Unit Selection

Conditions Estimate Standard Error

time2:Unit Selection -35.68 6.63
time2:HMM 12.83 1.89
time2:Natural 33.66 1.89
time2:LQ-HMM 18.10 1.88
time2:Hybrid 20.35 1.93
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Figure 7: ERPD % change from the baseline for each SNR level
for condition

est naturalness score. Although it wasn’t statistically different
to the HMM and US conditions in peak, it differs in the manner
in which it returns to the baseline.

In the harder SNR condition, the self-reported measures
show that Natural, Hybrid and US have higher CL scores than
HMM and LQ-HMM. It is interesting that the low quality sys-
tems are perceived to have a lower CL than the high quality
systems. These scores also correspond with the peak pupil dila-
tion, which shows that US, Hybrid and Natural have the higher
ERPDs. The shape of the peaks, however, reflect the opposite.
The flatter the peak, the higher the quality with the exception
of the LQ-HMM condition found to be equivalent to the Hybrid
system. Finally, for the poor quality systems: LQ-HMM and
HMM, a small difference between the two SNRs were observed
in Figure 7, indicating that ceiling in cognitive load was already
reached at the higher SNR. This could indicate why the load
was perceived to be less. For the high quality conditions: US,
Hybrid and Natural larger differences were observed.

5. Conclusion
In our previous study, uncertainties regarding exactly what was
being measured were raised. The current study attempted to
resolve some of those. Our results show that, in quiet listening
conditions, pupil dilation reflects engaged attention. In noisy
conditions, increased pupil dilation for high quality synthetic
speech indicates that listening effort increases as signal-to-noise
ratio decreases whilst for low quality systems, ceiling is reached
at easier SNR levels. Using GCA analysis both the slope and
peak shape detected differences in listening effort between the
various text-to-speech systems.
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