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Abstract

Selecting in-domain data from a large pool of diverse and out-
of-domain data is a non-trivial problem. In most cases sim-
ply using all of the available data will lead to sub-optimal and
in some cases even worse performance compared to carefully
selecting a matching set. This is true even for data-inefficient
neural models. Acoustic Latent Dirichlet Allocation (aLDA) is
shown to be useful in a variety of speech technology related
tasks, including domain adaptation of acoustic models for au-
tomatic speech recognition and entity labeling for information
retrieval. In this paper we propose to use aLDA as a data sim-
ilarity criterion in a data selection framework. Given a large
pool of out-of-domain and potentially mismatched data, the task
is to select the best-matching training data to a set of repre-
sentative utterances sampled from a target domain. Our tar-
get data consists of around 32 hours of meeting data (both far-
field and close-talk) and the pool contains 2k hours of meet-
ing, talks, voice search, dictation, command-and-control, audio
books, lectures, generic media and telephony speech data. The
proposed technique for training data selection, significantly out-
performs random selection, posterior-based selection as well as
using all of the available data.

Index Terms: Acoustic Latent Dirichlet Allocation, data selec-
tion, speech recognition

1. Introduction
Bootstrapping an speech recognition system for a new domain
is a common practical problem. A typical scenario is to have
some limited in-domain data from a target domain that ASR
system is being built for and a pool of out-of-domain data, of-
ten containing a diverse set of potentially mismatched data. Us-
ing all of the available data is not a good choice in some cases,
especially when the pooled data contains a lot of mismatched
data to your target domain. There are two main concerns about
using all of the available data. Some times the performance is
sub-optimal compared to carefully selecting a matching set and
in some cases the performance can be even worse [1, 2]. The
other concern is the amount of computation needed to train the
models. If a comparable or ideally a better model can be trained
with a fraction of the available data, then it would be more com-
putationally efficient to train with the smaller set. In these cases
data selection becomes a crucial problem. The same problem
is applicable for adaptation data selection as well, where the
aim is to select data for adapting acoustic model using a limited
in-domain dataset.

∗Core part of this work was performed while the author was study-
ing at the University of Sheffield

In this paper we propose to use acoustic Latent Dirichlet
Allocation (aLDA) for matching acoustically similar data to the
limited in-domain data from a pool of diverse data. aLDA is
already applied for domain discovery [3] and domain adapta-
tion [4] in automatic speech recognition as well as media entity
recognition, such as show and genre identification in informa-
tion retrieval systems for media archives [5, 6, 7].

Next section briefly discusses LDA and aLDA. Section 3
describes the experimental setup and how aLDA data selection
technique works, followed by the conclusion in section 4 and
references.

2. Acoustic Latent Dirichlet Allocation
As shown in our previous works [3, 4, 5], aLDA domain pos-
teriors have a unique distribution across different domains that
can be used to characterise the acoustic scenery. In this work
we make use of aLDA domain posterior features as a basis of
acoustic similarity in a data selection problem. The idea is that
using acoustically similar data to a target domain for training
acoustic models should improve the ASR accuracy on that do-
main. While using all of the available data which does not nec-
essarily match the target domain could potentially harm the ac-
curacy.

LDA is an unsupervised probabilistic generative model for
collections of discrete data. Since speech observations are con-
tinuous data, first it needs to be represented by some discrete
symbols, here called acoustic words. A GMM with N mixture
components is employed for this purpose. The index of Gaus-
sian component with the highest posterior probability is then
used to represent each frame with a discrete symbol. Frames of
every acoustic document of length T , di = {u1, ...,ut, ...,uT }
are represented as:

vt = arg max
n

P (Gn|ut), 1 ≤ n ≤ N (1)

where Gn is a Gaussian component from a mixture of N com-
ponents. With this new representation, document di is repre-
sented as d̃i = {v1, ..., vt, ..., vT }. For each acoustic word
vt in each acoustic document d̃i, term frequency-inverse docu-
ment frequency (tf-idf) can be computed as:

wt = tfidf(vt, d̃i, D̃) = tf(vt, d̃i) idf(vt, D̃) (2)

where D̃ is the set of all acoustic documents represented with
acoustic words. With each document now represented with tf-
idf scores as d̄i = {w1, ..., wt, ..., wT }, the LDA models can
be trained.

A graphical representation of the LDA model is shown at
Figure 1, as a three-level hierarchical Bayesian model. In this
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Figure 1: Graphical model representation of LDA

model, the only observed variables arewt’s. α and β are dataset
level parameters, θd̃i

is a document level variable and zt is a
latent variable indicating the domain from whichwt was drawn.
The following joint distribution is the result of the generative
process of LDA:

p(θ, z, d̄|α, β) = p(θ|α)

T∏
t=1

p(zt|θ)p(wt|zt, β) (3)

The posterior distribution of the latent variables given the acous-
tic document and α and β parameters is:

p(θ, z|d̄, α, β) =
p(θ, z, d̄|α, β)

p(d̄|α, β)
(4)

Computing p(d̄|α, β) requires some intractable integrals. A
reasonable approximate can be acquired using variational ap-
proximation, which is shown to work reasonably well in various
applications [8]. The approximated posterior distribution is:

q(θ, z|γ, φ) = q(θ|γ)

T∏
t=1

q(zt|φt) (5)

where γ is the Dirichlet parameter that determines θ and φ is
the parameter for the multinomial that generates the latent vari-
ables.

Training minimises the Kullback-Leiber Divergence be-
tween the real and the approximated joint probabilities (equa-
tions 4 and 5) [8]:

arg min
γ,φ

KLD
(
q(θ, z|γ, φ) || p(θ, z|d̄, α, β)

)
(6)

The posterior Dirichlet parameter γ(d̄) can be used as fea-
tures representing the acoustic conditions. These features are
used in different tasks, for example for genre and show entity
identification and classification tasks [5, 6, 7, 9] or for domain
discovery and adaptation in speech recognition [3, 4].

3. Experimental Setup
To evaluate the effectiveness of aLDA for data-selection in
ASR, we are trying to solve this practical problem: given a
small set of in-domain data and a large pool of out-of-domain
and potentially mismatched data, what’s the best set of data that
can be selected from the pool to train a model for the in-domain
data.

3.1. Data

The in-domain dataset consists of 32 hours of meeting data.
Meeting participants used a wide-variety of devices to join the
online meetings, including different headsets, earphones with
microphones, laptop/table/phone microphone in a far-field set-
ting (arm-length distance) and table-top meeting microphones.
Essentially the data is a mixture of far-field and close-talking in

Table 1: Statistics of the in-domain dataset

Characterisitc Notes
Gender 37% female / 63% male

Nativeness 77% native / 23% non-native

Device

53% laptop computer
11% desktop computer
19% mobile phone
9% tablet
8% other devices

Distance to microphone 27% far-field / 73% close-talk

Table 2: Statistics of the out-of-domain dataset

Domain Duration
(hours) Percentage

Generic media 782 39.1%
Audio books 339 17.0%
Meeting 228 11.4%
Telephony speech 218 10.9%
Talks 172 8.6%
Command and Control 112 5.6%
Lectures 111 5.6%
Dictation 38 1.9%
Total 2000 100%

different environments. Table 1 summarises some statistics of
the in-domain dataset.

Meetings are mostly real discussions about IT-related top-
ics and there was no control on the participants’ recording and
environmental conditions. From this in-domain set, 10 hours is
used as the dev set and 22 hours as the test set.

The pool of out-of-domain dataset consists of 2000 hours of
diverse and multi-domain data. Table 2 summarises the amount
of data for each domain.

Around 39% of the pooled data belongs to the generic me-
dia domain which includes professional and amateur media
recordings from radio, TV, pod-casts and YouTube. Meeting
data (which is considered to be the best matching data for our
in-domain data) is only 11% of the pooled data and they were
not a part of the in-domain meeting recordings.

The data used for language modelling is fixed in all experi-
ments and includes around 200 million words from Wikipedia,
TedTalks, YouTube subtitles and e-books with a vocabulary of
size 300 thousand words [10, 11]. For the lexicon, a base CMU
dictionary was used and for the OOVs, a seq-to-seq g2p model
was trained on the base lexicon and used to generate the missing
pronunciations [12].

3.2. Baseline

The purpose of this study is to show how aLDA data selection
can improve ASR accuracy of a target domain and for that rea-
son all of the model architectures are the same in all of the ex-
periments and the only difference is the amount of data used
for training the acoustic models. For acoustic models, TDNN-
LSTM model with 3 layers and 1024 nodes in each layer was
trained using the lattice-free MMI objective function [13] in
Kaldi toolkit [14]. During decoding a pruned 3-gram language
model was used to generate lattices and the lattices were then
rescored using a 5-gram language model. Table 3 presents the



Table 3: Baseline results

Model WER
Overall Far-field Close-talk

Baseline with all data 29.4 53.4 20.9

WER for the test set and for its far-field and close-talk subsets.
WER for the far-field subset of the test set is very high and that
shows how challenging this dataset is.

3.3. aLDA Data Selection

All of the in-domain data was used for training the aLDA model
with the procedure described in section 2 using a vocabulary
size of 1024 (number of Gaussian mixture components) and
2048 latent domains. Both these values were selected based on
our previous experiments [4, 5]. The trained aLDA model was
then used to get the posterior Dirichlet parameter γ for all of the
utterances in the training, dev and test set. The posterior vectors
from the dev set were then clustered into 512 clusters using k-
means clustering algorithm and the centroid of each cluster was
used to represent each cluster.

An iterative approach was used to select the matching data
from the pool of out-of-domain data. For each γi (centroid of
the cluster i) the distance to all of the utterances in the training
set is computed as:

Φ(γi, γj), ∀γj ∈ Strn (7)

where Strn is the set of all Dirichlet posterior vectors of the
training set and Φ is the cosine distance between the two vectors
defined as:

Φ(γi, γj) = 1− γiγj
||γi||2 ||γj ||2

(8)

The closest utterance (in terms of cosine distance between the
Dirichlet posteriors and cluster centroid) that was smaller than
a λ threshold was added to the selection and was removed from
the pool. This iterative process continued until either the mini-
mum distance criterion could not be met for all of the γi or the
pool was depleted. Algorithm 1 shows this iterative process.

Tuning the λ threshold requires exploration of a range of
values. In our experiments we found that this threshold value is
not very sensitive and values in the range of 0.1 to 0.25 resulted
in sensible amounts of data. In the final experiment a threshold
value of 0.2 was used. This threshold value can also be used
to control the amount of data being selected as well if there is
budget on the amount of data.

3.4. Combining Text LDA with aLDA

Text-based LDA (tLDA) can also be used to further improve the
aLDA data selection. The idea is that aLDA captures acoustic
similarities in the data and tLDA can further help with linguistic
content’s similarity. tLDA is already shown to improve classi-
fication accuracy in LDA based acoustic information retrieval
[5] as well as language modelling tasks [15, 16, 17, 18, 19].
Training tLDA models followed a similar procedure to aLDA

Algorithm 1 Data-selection based on Dirichlet posterior

Input: Training data Strn of M utterances,
Training set Dirichlet posteriors {γtrn1 , . . . , γtrnM },
Dev set posterior centroids {γdev1 , . . . , γdevN },
Distance threshold λ

Initialize: Snew = {}; count = 0;

while Strn 6= ∅ do
count = 0
for All γdevi ∈

{
γdev1 , . . . , γdevN

}
do

d = min Φ(γdevi , γtrnj ) ∀γtrnj ∈ {γtrn1 , . . . , γtrnM }
if d < λ then

j∗ = arg min
j

Φ(γdevi , γtrnj )

Remove γtrnj∗ from {γtrn1 , . . . , γtrnM } set

Strn = Strn \ {strnj∗ }

Snew = Snew ∪ {strnj∗ }

count = count+ 1

end if
end for
if count == 0 then

break
end if

end while

Output: Snew

and a comparable number of latent topics and vocabulary size
was used. In our experiments tLDA on its own was not outper-
forming the baseline and hence those results are not included
in this paper. An explanation for it could be the fact that pure
linguistic similarity does not necessarily mean that the acoustic
conditions are similar as well and thus cannot compensate for
the acoustic mismatch.

Different approaches for combining aLDA and tLDA scores
were examined. Including but not limited to linear combination
of posteriors, two level hierarchical search and two independent
search followed by union. At the end using two approaches
independently and then combining the selected data resulted in
the best performance.

3.5. Results and Discussion

In this section LDA based data selection is compared against
random selection, using all of the available data (2000 hours)
and phone-posterior based data selection [20]. Table 5 sum-
merises the results of the experiments. For the random selection
two budgets of 500 and 1000 hours are used and each experi-
ment is repeated 2 times and an average value plus the stan-
dard deviation of the runs are provided (due to the data size
and computation time this experiment could not be repeated
more). Using all of the available data, the WER on the test set is
29.4. Phone-posterior based selection with a predefined budget
of 1000 hours yields a WER of 29.0 which is slightly better than
using all of the available data, but savings on computation time
is massive (50% less data used for training the model). aLDA
method selects 49.7% of the data and brings down the error by



Table 4: WER and amount of data for different data selection
methods

Method Amount of data
(hours) WER

Random selection 500 31.5 (±2.00)
1000 30.1 (±0.98)

All of data 2000 29.4
Phone-posterior 1000 29.0
aLDA 995.4 28.5
aLDA + tLDA 1103.9 28.3

Table 5: Amount of selected data by aLDA

Component Duration
(hours)

Percentage
of domain

Generic media 317.5 40.6%
Meeting 205.5 90.1%
Audio books 147.6 43.5%
Talks 136.9 79.6%
Lectures 94.6 85.2%
Telephony speech 84.3 38.7%
Dictation 6.3 16.6%
Command and Control 2.7 2.4%
Total 995.4 n/a

0.9% absolute. Combing aLDA with tLDA further reduces the
error to 28.3% while selecting only 108.5 hours more data.

The results presented in table 5 show the effectiveness of
the proposed aLDA data selection and how it can be further
improved by using tLDA.

3.6. Analysis of the Selected Data

From the pool of 2000 hours, aLDA technique selected 995.4
hours. In this section the selected data is analysed to understand
which parts of the training data was found to be the best match
to the target in-domain data.

The training pool consists of data from 8 domains: audio
books, command and control, dictation, generic media, lectures,
meetings, talks and telephony speech. From these domains only
the meeting data seems to be the best match, at least in terms of
the domain tags associated with each component. As mentioned
in section 3.1, the meeting data in our training set is not a part
of the test set recordings, but rather some generic and diverse
meeting data. It includes data from the AMI [21] and ICSI [22]
projects as well as some other internal and external sources and
in that sense it’s not considered as an strictly in-domain data.

The majority of the selected data belongs to the generic me-
dia domain (which was the predominant class in our pool), also
almost all of the available meeting data was selected showing
that it was a very good match to our in-domain meeting data, at
least compared to other data sources. Other interesting obser-
vation is the amount of data from dictation and command and
control domains, where in total only 8 hours is selected. Check-
ing those data, they are very clean audio. Command and control
data set has a lot of very short utterances (single words) and that
could contribute to the LDA domains posterior mismatch and
not being selected.

In the previous section it was shown that including the
data from tLDA selection improves the ASR performence while

adding only 108 extra hours. Inspecting those extra data reveals
that most of them are selected from talks and telephone speech
(35h and 65h respectively). Suggesting that the textual simi-
larities of those domains was picked up by the tLDA and we
end up using all of the available talks data in the training of the
aLDA+tLDA model. Those extra data improves the accruacy
by 0.2% absolute.

4. Conclusions
Selecting matching data to a small set of in-domain data from
a large pool of out-of-domain and mismatched data is a non-
trivial problem. This problem arises in many practical applica-
tions of speech recognition where the task is to build an ASR
system for a new target domain where there is a very limited
amount of data is available. Often using all of the potentially
mismatched data results in sub-optimal and poor performance
compared to carefully selecting a matching subset.

In this paper aLDA based data selection is proposed for
the first time and its effectiveness is experimented on a large
dataset. Our in-domain dataset contains 32 hours of meeting
data (mixed far-field and close-talking) and the pool of out-of-
domain data consists of 2000 hours of data from very diverse
domains. Using all of the available data, the baseline WER is
29.4%. Using the proposed iterative data selection technique
and with slightly less than half of the training data the overal
WER on our 20-hour test set is 0.9% absolute better than using
all of the available data. Combining aLDA with tLDA further
reduces the WER to 28.3%.

Future work can include automatic distance threshold find-
ing, exploring the effectiveness of aLDA data selection with
data augmentation, finding better ways to combine aLDA and
tLDA and further analysis of the selected data by aLDA+tLDA.
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