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Abstract
The use of deep learning (DL) architectures for speech enhance-
ment has recently improved the robustness of voice applications
under diverse noise conditions. These improvements are usually
evaluated based on the perceptual quality of the enhanced audio
or on the performance of automatic speech recognition (ASR)
systems. We are interested instead in the usefulness of these al-
gorithms in the field of speech emotion recognition (SER), and
specifically in whether an enhancement architecture can effec-
tively remove noise while preserving enough information for
an SER algorithm to accurately identify emotion in speech. We
first show how a scalable DL architecture can be trained to en-
hance audio signals in a large number of unseen environments,
and go on to show how that can benefit common SER pipelines
in terms of noise robustness. Our results show that incorporat-
ing a speech enhancement architecture is beneficial, especially
for low signal-to-noise ratio (SNR) conditions.
Index Terms: speech enhancement, speech emotion recogni-
tion

1. Introduction
Recently, deep neural networks (DNNs) have provided state of
the art results in a large number of applications. They are mostly
known for their widespread usage in the image domain, rein-
forcement learning, and natural language processing (NLP), and
their most successful application in the audio domain has been
in the field of ASR [1]. However, these methods have also been
gaining traction in the fields of source separation and speech
enhancement [2].

Speech enhancement architectures are usually evaluated us-
ing some speech quality metric like PESQ [3] or STOI [4], or
focus on improving metrics like word error rate (WER) for ASR
[5, 6, 7]. In contrast, we consider the application of these archi-
tectures in the field of SER, where additive noise and reverber-
ation have been shown to severely degrade the performance of
algorithms [8].

Previous work has focused on the evaluation of SER algo-
rithms based on acoustic features under white noise or for a
limited number of noise environments. Schuller et al. [9] in-
vestigated the negative effects of white noise on two originally
clean data sets and tried to mitigate them using feature selec-
tion. Schuller et al. [8] considered the effects of reverberation,
both artificially added and originally present in the recordings,
as well as additive white noise. Tawari and Trivedi [10] in-
troduced speech enhancement as a preprocessing step, utilizing
adaptive thresholding in the wavelet domain to deal with car and
white noise. Eyben et al. [11] tried to counter the problem by

augmenting the training set with noisy audio and also extended
the problem to five different types of additive noise. Weninger
et al. [12] used non-negative matrix factorisation (NMF) on mel
spectra to augment a set acoustic features and reduce the effects
of additive noise and reverberation, but limited their investiga-
tion to only two kinds of additive noise. Zhao et al. [13] used
a sparse representation for robust SER under white noise. Avila
et al. [14] evaluated the benefits of using a speech enhancement
algorithm as a preprocessing step for an SER pipeline based on
acoustic features for a single noise type, and how performance
correlates with traditional speech quality measures.

While previous work in this area has illustrated the prob-
lems that noise can cause for SER applications, their scope has
been limited to a small amount of environments and noise types.
They also concentrate on algorithms based on acoustic features,
and do not take recent DL approaches into consideration. Fi-
nally, the integration of a speech enhancement pipeline has only
been considered as a preprocessing step.

We move beyond previous work in a number of ways. First,
we examine the effects of noise on an end-to-end DL based
architecture which operates on raw audio input, in addition to
traditional, acoustic feature based algorithms. Secondly, we
scale up the number of noise environments taken into consid-
eration, essentially moving towards a production ready speech
enhancement algorithm that can work reliably for different SER
applications under very diverse conditions. In addition, we
consider potential trade-offs of speech enhancement algorithms
with respect to SER. We hypothesize that enhancement algo-
rithms must not only remove the environment noise, but also
preserve those qualities that characterise speech from an emo-
tional perspective, and shed more light on this with our experi-
ments. Finally, we explore the potential benefits of integrating a
speech enhancement architecture in different stages of an SER
pipeline compared to simply augmenting the training set with
noisy audio or using an enhancement algorithm only in the pre-
processing stage.

2. Speech enhancement
2.1. Data sets

We choose the Mozilla Common Voice database1 as a source
of speech signals because it offers a large amount of very di-
verse speech segments coming from a variety of speakers and
recording conditions.

We use Audio Set [15] as the source of our noise signals.
Audio Set is a very large corpus of audio segments extracted

1https://voice.mozilla.org/
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Table 1: Emotion database information

RECOLA EMO-DB eNTERFACE

Subjects (m/f) 19/27 5/5 34/8
Sample Rate 44.1 kHz 16 kHz 48 kHz
Language French German English
Utterances N/A 465 967
Duration 2 h 15 min 21 min 45 min
Emotion spontaneous acted acted
Labels arousal anger,

boredom, fear,
joy, sadness,
neutral

anger,
boredom, fear,
joy, sadness,
neutral, disgust

from YouTube videos and manually annotated according to a
hierarchical ontology of 632 audio categories. From those, we
exclude the ones that belong to the Human Source and Music
categories, as they are likely to contain human speech.

2.2. Architecture

Our approach is based on stacked residual blocks [16] of 2D
convolution layers, that have been previously shown to effi-
ciently learn rich representations of input signals. We use an
architecture similar to that of Keren et al. [5], with our main dif-
ference being that we do not use an embedding subnetwork to
condition the network on the noise environment, which makes
our algorithm easier to use in practice, since recordings of the
background noise may be hard to acquire.

We use in total 8 residual blocks, the first 4 containing con-
volution layers with a 4 × 4 kernel, and the last 4 containing
convolution layers with a 3× 3 kernel. We start with 64 feature
maps for each convolution layer in the first 2 blocks, then dou-
ble the number of feature maps with each successive group of 2
residual blocks. We also apply a 2× 2 stride in blocks 3, 5, and
7. The output of the last residual block is first processed by a 2D
convolution layer to reduce its dimensionality before being fed
to a fully-connected layer that maps it to the appropriate size.
We use the output directly as our enhancement mask without
applying any kind of activation.

The input to our network is log magnitude spectrograms,
where the speech signal is initially resampled to 16 kHz and
then mixed on the fly with a noisy signal randomly sampled
from our noise data set. The two signals are mixed at a SNR
selected randomly in the range of 0 dB to 25 dB with a step of
5 dB. We then compute the short-time Fourier transform (STFT)
of the clean and noisy signals using a window of size 25 ms and
a stride of 10 ms.

The network enhances a single frame on each forward pass.
It takes as input a segment of n frames of the noisy signal
(where we found the best value for n to be 35 using the vali-
dation set), and outputs an enhancement mask that is added to
the original central frame of our input to compute the enhanced
frame. We compute the mean square error (MSE) between the
enhanced and the clean frame and use that as the loss function
to train the network. The network was trained using stochastic
gradient descent (SGD) with a learning rate of 0.01 and a batch
size of 64 examples.

3. Speech emotion recognition
3.1. Data sets

We use three standard emotion corpora to test the perfor-
mance of our speech enhancement architecture for SER, namely
the REmote COLlaborative and Affective interactions corpus
(RECOLA) [17], the Berlin Emotional Speech Database (EMO-
DB) [18] and eNTERFACE [19]. For our experiments on
RECOLA, we predict a continuous arousal value every 40 ms,
matching its official annotation scheme, while for EMO-DB and
eNTERFACE we predict a single emotion label on the utterance
level.

It is important to note that a) none of these data sets were
seen during training of the speech enhancement architecture,
and that b) two of the data sets are recorded in a different lan-
guage than the data we used for training the enhancement net-
work, indicating that the enhancement network indeed learns to
remove noise from human speech and is not overfitting to the
training data set. Details about the data sets can be found in
Table 1.

3.2. Architectures

3.2.1. Acoustic features

We use openSMILE [20], our open-source feature extraction
toolkit that is widely used in the field of SER, to extract fea-
tures, because it comes prepackaged with numerous standard-
ised feature sets that have been successfully used to build emo-
tion recognition architectures, predominantly under the assump-
tion that every utterance is characterised by a single label.

Out of the numerous available feature sets, we limited our
analysis to the two most commonly used ones, namely Com-
ParE [21] and extended Geneva Minimalistic Acoustic Param-
eter Set (eGeMAPS) [22]. In both cases, we used a support
vector machine (SVM) with a radial basis function (RBF) ker-
nel [23] as the classifier. We followed this approach for the
EMO-DB and eNTERFACE data sets.

3.2.2. End-to-end

We base our implementation on that of Trigeorgis et al. [24],
where the authors successfully employ a DNN architecture for
modelling arousal on the RECOLA database using raw audio
as input. In this context, end-to-end refers to training an SER
model to predict arousal using raw audio as input, and does not
also encompass our enhancement architecture, which is only
used as a separate pre-processing step. The input to the net-
work is a 6 s audio sample sampled at 16 kHz. It consists of
two 1D convolution layers containing 20 and 40 filter banks,
which are followed by two max pooling layers with a stride of
2 and 10, respectively. The output of the second pooling layer
is fed to two uni-directional long short-term memory (LSTM)
layers [25], each having 256 units. The output of the last LSTM
is mapped to the arousal prediction through a fully-connected
layer followed by a tanh activation. We also used a dropout of
0.5 after each convolution layer to prevent overfitting.

We train the model for 50 epochs with a batch size of 25
examples and a learning rate of 0.0001, use concordance corre-
lation coefficient (ρc) as the loss function, and choose the model
that performed best on the validation set based on ρc. We also
performed all of the post-processing steps reported by Trigeor-
gis et al. [24], namely median filtering, centring, scaling and
time shifting.

1692



Table 2: UAR (in %) results under matched conditions using
openSMILE features and SVMs for EMO-DB and eNTERFACE

Data set Features Clean Noisy Enhanced

EMO-DB ComParE 72.34 52.23 58.06
eGeMAPS 61.04 46.42 52.63

eNTERFACE ComParE 65.60 46.19 44.22
eGeMAPS 47.87 34.64 37.19

4. Results
We are interested in whether integrating a speech enhancement
algorithm in an SER pipeline can be beneficial. There are three
ways to do that, namely:

Matched conditions where we integrate the enhancement
both in the training and testing phase when the SNR conditions
are fixed. We compare the performance of SER algorithms
trained using enhanced audio and tested on enhanced audio,
with the performance of SER algorithms trained on noisy au-
dio and tested on noisy audio.

Mismatched conditions where we integrate the enhance-
ment in the testing phase only. We train our SER algorithms on
the clean audio only and test on both the noisy and enhanced
test sets.

Multi-SNR conditions where we integrate the enhance-
ment both in the training and testing phase but with unknown
SNR conditions.

In all cases, we investigated the performance of our algo-
rithm in SNR levels ranging from −5 dB to 20 dB, with a step of
5 dB. We note that the enhancement network was trained with
SNR levels ranging from 0 dB to 25 dB, so the −5 dB condition
is much lower than that to which it was exposed during training.

We report ρc results on the arousal dimension for
RECOLA, and unweighted average recall (UAR) of the emo-
tion classes for EMO-DB and eNTERFACE. For RECOLA, we
used the official training, validation and test sets of the AVEC
2016 challenge [26]. For eNTERFACE and EMO-DB we per-
formed leave-one-speaker-out (LOSO) cross-validation (CV) to
make our results easily reproducible.

4.1. Matched conditions

Our results for the matched conditions scenario on the eNTER-
FACE and EMO-DB data sets are presented in Table 2, where
we average them across SNR levels. Our first observation is
that the SER architectures achieve better performance when us-
ing enhanced audio compared to using noisy audio in almost all
cases. The only exception is when training an SVM with Com-
ParE features on eNTERFACE, but there the difference in UAR
is small.

4.2. Mismatched conditions

4.2.1. Aggregated results

We present average results across SNRs in Table 3 for mis-
matched conditions. We can see that, on average, testing an
SER architecture trained exclusively on clean audio on the en-
hanced audio improves ρc on RECOLA and UAR on EMO-DB,
but decreases UAR on eNTERFACE compared to testing on the
noisy audio.

An auditory inspection of the eNTERFACE data set re-
vealed that the original audio recordings include a lot of rever-
beration noise, which degrades the quality of the data, whereas

Table 3: ρc (a) and UAR (b, in %) results under mismatched
conditions.

(a) For RECOLA, we use the end-to-end architecture and eval-
uate on the arousal dimension.

Data set Features Clean Noisy Enhanced

RECOLA raw signal 0.4781 0.4066 0.4337

(b) For EMO-DB and eNTERFACE we use openSMILE features
and SVMs.

Data set Features Clean Noisy Enhanced

EMO-DB ComParE 72.34 24.56 32.99
eGeMAPS 61.04 33.94 48.72

eNTERFACE ComParE 65.60 35.91 30.88
eGeMAPS 47.87 29.49 23.87

our enhancement network was only trained to remove additive
noise and did not learn to deal with reverberation.

4.2.2. Detailed results

We present a more fine-grained analysis of our evaluation in Ta-
bles 4 and 5, where we report explicit results per SNR. We first
examine the robustness of all SER architectures under additive
noise. We observe that the algorithm based on openSMILE fea-
tures and SVMs suffers from large drops in performance for
all SNRs. In the lower SNRs in particular, the SVM architec-
tures give results slightly above chance levels. We also note that
eGeMAPS appears to be more robust to noise conditions than
ComParE. This can be attributed to the much higher dimen-
sionality of ComParE, which might lead to overfitting on the
training conditions. The end-to-end architecture on the other
hand is more robust to noise in the mid SNRs range, but still
suffers a performance drop in the lower SNRs. We also note
an increase in the performance of the end-to-end architecture
trained on original audio when tested with noisy audio in the
higher SNRs. We explain this unexpected observation through
the presence of speaker pauses in the continuous recordings of
RECOLA. In those instances the end-to-end model is lacking
speech information and constantly outputs a low arousal score.
The ground truth, however, does not suffer from the same lack
of information as the raters based their judgment both on the au-
dio and the video channel. In the presence of noise, it becomes
more likely that the end-to-end model predicts a slightly higher
arousal level, which may occasionally fit the ground truth and,
thus, boost the performance of the model. This also explains
why results drop again when speech enhancement is applied.

Next, we examine potential performance gains obtained by
enhancing the noisy audio with our architecture. In general,
we observe an improvement for all data sets and algorithms in
the low SNRs. Results on EMO-DB are improved in all cases.
Results on RECOLA are also better or equal to using noisy au-
dio up to 10 dB and especially in the very low SNRs of -5 and
0 dB. In the higher SNRs, where the end-to-end architecture al-
ready performed better on the noisy audio, we actually observe
a drop in performance, however, ρc is still close to the original.
Finally, as mentioned, the eNTERFACE data set is more chal-
lenging because of the presence of reverberation noise in the
original audio. Nevertheless, our enhancement architecture can
still improve performance in the lower SNRs even for this data
set.

1693



Table 4: RECOLA ρc results for the arousal dimension under
mismatched conditions where the training set consists of sam-
ples of clean audio.

Data set Clean SNR (dB) Noisy Enhanced

RECOLA 0.4781

−5 0.2167 0.4022
0 0.3206 0.4165
5 0.4067 0.4400

10 0.4530 0.4504
15 0.5097 0.4486
20 0.5327 0.4444

Table 5: UAR (in %) results under mismatched conditions using
openSMILE features and SVMs on EMO-DB and eNTERFACE.

EMO-DB eNTERFACE

Features SNR (dB) Noisy Enhanced Noisy Enhanced

ComParE

−5 14.73 20.75 19.81 25.73
0 18.05 26.85 23.13 30.68
5 20.30 33.95 34.59 32.15

10 23.02 36.65 37.28 32.95
15 31.00 39.34 47.03 30.66
20 40.27 40.39 53.60 33.13

eGeMAPS

−5 16.29 36.14 16.20 22.94
0 19.82 45.07 20.69 23.65
5 28.35 50.99 27.69 25.09

10 39.36 53.25 32.92 23.72
15 46.34 52.84 37.22 24.17
20 53.49 54.07 42.22 23.65

These results also confirm our original hypothesis that in-
corporating an enhancement architecture in an SER pipeline is
not straightforward. In the lower SNRs, all SER models bene-
fit from the enhancement. However, as the SNR increases, the
performance gains become smaller. Even on EMO-DB, where
the enhancement architecture helps in all cases, we see that the
performance gains are smaller in the higher SNRs, and the per-
formance gap between the enhanced and the clean audio is still
large.

An auditory inspection of the results for these two data sets
revealed the following. In the low SNR levels, there remains
some residual noise even after the enhancement. This could
be why the SER performance in the low SNRs is still low. In
the higher SNRs, we observed very little residual noise. How-
ever, there were cases where the enhanced audio appeared dis-
torted, and cases where the enhancement network introduced
small artefacts in parts of the audio. These changes in the audio
quality could explain why there are small or no gains in using
the enhanced audio in the high SNR cases, and illustrate the im-
portance of preserving the quality of the original speech signal
for SER.

4.3. Multi-SNR conditions

Finally, we consider the case where a researcher or developer
assumes that noise will be present during the testing phase, but
does not know which SNR level to expect. In that case, he or she
will likely try to make their SER pipeline more robust against
noise, either by augmenting the training set with noisy audio, or
by integrating an enhancement architecture. We investigate the
following two scenarios:

• Training on noisy audio and testing on audio of the same

Table 6: RECOLA ρc results for the arousal dimension under
multi-SNR conditions where the training set consists of samples
of either noisy or enhanced audio, and the test set consists of
samples of the same type but potentially different SNR levels.

Data set Train SNR
(dB)

Test SNR
(dB) Noisy Enhanced

RECOLA

5 5 0.4460 0.4439
5 10 0.4419 0.4500
5 15 0.4409 0.4411

10 5 0.4489 0.4447
10 10 0.4646 0.4526
10 15 0.4650 0.4455

15 5 0.4545 0.5040
15 10 0.4678 0.5133
15 15 0.4846 0.5074

Average 0.4571 0.4669

kind but of potentially different SNR levels and noise en-
vironments without incorporating a speech enhancement
architecture at all;

• Training on enhanced audio and testing on audio of the
same kind but of potentially different SNR levels and
noise environments, essentially integrating the speech
enhancement architecture in both the training and test-
ing phases.

We present results for the RECOLA data set using the end-
to-end architecture in Table 6 for three different SNR levels
in the mid-SNR range where we saw the SER algorithm tran-
sition from performing better on the enhanced audio to per-
forming better on the noisy audio in the mismatched case. Re-
sults show that integrating the speech enhancement architecture
in the training phase still increases performance in the lower
SNRs, but without suffering from a similar drop as in the mis-
matched condition in the higher SNRs. In particular, we ob-
serve similar performance when training on audio of lower SNR
and testing on the same or higher SNR, between noisy and en-
hanced audio. However, there is an improvement when we train
on a high SNR and test on same or lower SNRs. This indicates
that we can benefit from including the speech enhancement ar-
chitecture in both the training and the testing phase of an SER
pipeline even when the test conditions are not known.

5. Conclusions
In this work, we investigated the impact of noise on two pop-
ular SER architectures and the potential benefits of integrating
speech enhancement in SER applications. In general, our en-
hancement architecture performs favourably for the lower SNRs
in the very challenging scenario of training an SER architecture
only on original audio and simply integrating the enhancement
as a pre-processing step in the testing phase. In the very low
and negative SNRs in particular, the enhancement network was
able to render the SER algorithms usable again.

We also discovered that using an enhancement architecture
can potentially degrade the audio quality and introduce artefacts
that make an SER algorithm perform worse compared to the
noisy audio in high SNRs, which further supports our hypothe-
sis that speech enhancement algorithms must be designed with
an emphasis on preserving the emotional information in the sig-
nal for robust SER.
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