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Abstract
Deep neural network models for speech recognition have
achieved great success recently, but they can learn incorrect
associations between the target and nuisance factors of speech
(e.g., speaker identities, background noise, etc.), which can lead
to overfitting. While several methods have been proposed to
tackle this problem, existing methods incorporate additional in-
formation about nuisance factors during training to develop in-
variant models. However, enumeration of all possible nuisance
factors in speech data and the collection of their annotations is
difficult and expensive. We present a robust training scheme
for end-to-end speech recognition that adopts an unsupervised
adversarial invariance induction framework to separate out es-
sential factors for speech-recognition from nuisances without
using any supplementary labels besides the transcriptions. Ex-
periments show that the speech recognition model trained with
the proposed training scheme achieves relative improvements
of 5.48% on WSJ0, 6.16% on CHiME3, and 6.61% on TIMIT
dataset over the base model. Additionally, the proposed method
achieves a relative improvement of 14.44% on the combined
WSJ0+CHiME3 dataset.
Index Terms: invariant representation learning, speech recog-
nition, adversarial learning

1. Introduction
With the aid of recent advances in neural networks, end-to-end
deep learning systems for automatic speech recognition (ASR)
have gained popularity and achieved extraordinary performance
on a variety of benchmarks [1, 2, 3, 4]. End-to-end ASR
models typically consist of Recurrent Neural Networks (RNNs)
with Sequence-to-Sequence (Seq2Seq) architectures and atten-
tion mechanisms [5], RNN transducers [6], or transformer net-
works [3]. These systems learn a direct mapping from an au-
dio signal sequence to a sequence of text transcriptions. How-
ever, the input audio sequence often contains nuisance factors
that are irrelevant to the recognition task and the trained model
can incorrectly learn to associate some of these factors with
target variables, which leads to overfitting. For example, be-
sides linguistic content, speech data contains nuisance informa-
tion about speaker identities, background noise, etc., which can
hurt the recognition performance if the distributions of these at-
tributes are mismatched between training and testing.

A common method for combatting the vulnerability of deep
neural networks to nuisance factors is the incorporation of in-
variance induction during model training. For example, invari-
ant deep models have achieved considerable success in com-
puter vision [7, 8, 9] and speech recognition [10, 11, 12, 13].
Serdyuk et al. [10] obtain noise-invariant representations by em-
ploying noise-condition annotations and the gradient reversal
layer [14] for acoustic modeling. Similarly, Meng et al. [11]
utilize speaker information to train a speaker-invariant model
for senone prediction. Hsu et al. [12] extract domain-invariant

features using a factorized hierarchical variational autoencoder.
Liang et al. [13] force their end-to-end ASR model to learn sim-
ilar representations for clean input instances and their syntheti-
cally generated noisy counterparts.

While these methods work well at handling discrepancies
between training and testing datasets for ASR systems, they re-
quire domain knowledge [12], supplementary nuisance infor-
mation during training (e.g., speaker identities [11], recording
environments [10], etc.), or pairwise data [13]. However, these
requirements are difficult and expensive to fulfill in real world,
e.g., it is hard to enumerate all possible nuisance factors and
collect corresponding annotations.

In this work, we propose a new training scheme, namely
NIESR, which adopts the unsupervised adversarial invariance
learning framework (UAI) [7] for end-to-end speech recog-
nition. Without incorporating supervised information of nui-
sances for the input signal features, the proposed method is ca-
pable of separating the underlying elements of speech data into
two series of latent embeddings – one containing all the infor-
mation that is essential for ASR, and the other containing in-
formation that is irrelevant to the recognition task (e.g. accents,
background noises, etc.). Experimental results show that the
proposed training method boosts the end-to-end ASR perfor-
mance on WSJ0, CHiME3, and TIMIT datasets. We also show
the effectiveness of combining NIESR with data augmentation.

2. Methodology
In this section, we present the proposed NIESR model for
nuisance-invariant end-to-end speech recognition, where the in-
variance is achieved by adopting the UAI framework [7]. We
begin by describing the base Seq2Seq ASR model. Subse-
quently, we introduce the UAI framework for unsupervised ad-
versarial invariance induction. Finally, we present the complete
design of the proposed NIESR model.

2.1. Base Sequence-to-sequence Model

We are interested in learning a mapping from a sequence of
acoustic spectra features x = (x1, x2, . . . , xT ) to a series
of textual characters y = (y1, y2, . . . , yS), given a dataset
D ≡ {(x,y)i}Ni=1, following the formulation of Chan et al. [5].
We employ a Seq2Seq model for this task, which estimates the
probability of each character output yi by conditioning over the
previous characters y1:(i−1) and the input sequence x. Thus,
the conditional probability of the entire output y is:

p(y|x) =
∏
i

p(yi|x,y1:(i−1)) (1)

A Seq2Seq model is composed of two modules: an encoder
Enc and a decoder Dec. Enc transforms the input features
x into a high-level representation h = (h1, h2, . . . , hT ), i.e.
h = Enc(x) andDec infers the output sequence y from h. We
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model Enc as a stack of Bidirectional Long-Short Term Mem-
ory (BLSTM) layers with interspersed projected-subsampling
layers [15]. The subsampling layer projects a pair of consec-
utive input frames (u2i−1, u2i) to a single lower-dimensional
frame vi. We model Dec as an attention-based LSTM trans-
ducer [16], which employs h to produce the output character
sequence. At every time step, Dec generates a probability dis-
tribution of yi over character sequences, which is a function of
a transducer state si and an attention context ci. We denote this
function as CharDist, which is implemented as a single layer
perceptron with softmax activation:

si = LSTM([yi−1, ci−1], si−1) (2)
p(yi|x,y1:(i−1)) = CharDist(si, ci) (3)

In order to calculate the attention context ci, we employ the
hybrid location-aware content-based attention mechanism pro-
posed by [17]. Specifically, the attention energy ei,j for frame
j at time-step i takes previous attention alignment αi−1 into
account through the convolution operation:

ei,j = wᵀtanh(Wsi + V hj + U(F ∗ αi−1) + b) (4)

where w, b, W , V , U , and F are learned parameters and ∗
depicts the convolution operation. The attention alignment αi,j

and the attention context ci is then calculated as:

αi,j =
exp(ei,j)∑L

k=1 exp(ei,k)
, ci =

∑L
j=1 αi,jhj (5)

The base model is trained by minimizing the cross-entropy loss:

Ly = −
∑
i

log p(yi|x,y1:(i−1)) (6)

2.2. Unsupervised Adversarial Invariance Induction

Deep neural networks (DNNs) often learn incorrect associations
between nuisance factors in the raw data and the final target,
leading to poor generalization [7]. In the case of ASR, the net-
work can link accents, speaker-specific information, or back-
ground noise with the transcriptions, resulting in overfitting. In
order to cope with this issue, we adopt the unsupervised ad-
versarial invariance (UAI) [7] framework for learning invariant
representations that eliminate factors irrelevant to the recogni-
tion task without requiring any knowledge of nuisance factors.

The working principle of UAI is to learn a split representa-
tion of data as h1 and h2, where h1 contains information rel-
evant to the prediction task (here ASR) and h2 holds all other
information about the input data. The underlying mechanism
for learning such a split representation is to induce competition
between the main prediction task and an auxiliary task of data
reconstruction. In order to achieve this, the framework uses h1

for the prediction task and a noisy version h̃1 of h1 along with
h2 for reconstruction. In addition, a disentanglement constraint
enforces that h1 and h2 contain independent information. The
prediction task tries to pull relevant factors into h1, while the
reconstruction task drives h2 to store all the information about
input data because h̃1 is unreliable. However, the disentan-
glement constraint forces the two embeddings to not contain
overlapping information, thus leading to competition. At con-
vergence, this results in a nuisance-free h1 that contains only
those factors that are essential for the prediction task.
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Figure 1: NIESR: The two encoders Enc1 and Enc2 are
BLSTM-based feature extractors that encode the input sequence
x into representations h1 and h2. The two encodings are disen-
tangled by adversarially training the two disentanglers, Dis1
and Dis2, which aim to predict one embedding from another.
Dec is an attention-based decoder that generates the target y
characters from h1. Recon is a BLSTM-based reconstructor
that decodes h2 and the noisy h̃1 back to the input-sequence x

2.3. NIESR Model Design and Optimization

The NIESR model comprises five types of modules: (1) en-
coders Enc1 and Enc2 that map input data to the encodings
h1 and h2, respectively, (2) a decoder Dec that infers target
y from h1, (3) a dropout layer that converts h1 into its noisy
version h̃1, (4) a reconstructor Recon that reconstructs input
data from [h̃1,h2], and (5) two adversarial disentanglers Dis1
and Dis2 that try to infer each embedding (h1 or h2) from the
other. Figure 1 shows the complete NIESR model.

The encoder Enc1 and decoder Dec follow the base model
design as described in Section 2.1, i.e., an attention-based
Seq2Seq model for the speech recognition task. Enc2 is de-
signed to have exactly the same structure asEnc1. The dropout
layer is introduced to make h̃1 an unreliable source of infor-
mation for reconstruction, which influences the reconstruction
task to extract all information about x into h2 [7]. Recon is
modeled as a stack of BLSTM layers interspersed with novel
upsampling layers, which perform decompression by splitting
information in each time-frame to two frames. This is the in-
verse of the subsampling layers [15] used in Enc1 and Enc2.
The upsampling operation is formulated as:

[u2i−1, u2i] = BLSTM([h̃1
i , h

2
i ], si−1) (7)

o2i = Pu2i , o2i−1 = Pu2i−1 (8)

where [·, ·] represents concatenation, o is the output, and P is a
learned projection matrix.

The adversarial disentanglers Dis1 and Dis2 model the
UAI disentanglement constraint discussed in Section 2.2 fol-
lowing previous works [7, 8, 9]. Dis1 tries to predict h2 from



h1 and Dis2 tries to do the inverse. This is directly opposite
to the desired independence between h1 and h2. Thus, training
Dis1 andDis2 adversarially against the rest of the model helps
achieve the independence goal. Unlike previous works [7, 8, 9],
the encodings h1 and h2 for this work are vector-sequences
instead of single vectors: h1 = (h1

1, h
1
2, . . . , h

1
L) and h2 =

(h2
1, h

2
2, . . . , h

2
L). Naı̈ve instantiations of the disentanglers

would perform frame-specific predictions of h2
i from h1

i and
vice versa. However, each pair of h1

i and h2
i generated at the

time-step i contains information not only from frame i but also
from other frames across the time-span. This is because Enc1
and Enc2 are modeled as RNNs. Therefore, a better method
to perform disentanglement for sequential representations is to
use the whole series of h1 or h2 to estimate every element of
the other. Hence, we model Dis1 and Dis2 as BLSTMs.

The proposed NIESR model is optimized by adopting the
UAI training strategy [7, 9], i.e., playing a game where we treat
Enc1, Enc2, Dec, and Recon as one player P1, and Dis1
and Dis2 as the other player P2. The model is trained using
a scheduled update scheme where we freeze the weights of one
player model when we update the weights of the other. The
training objective comprises three tasks: (1) predicting tran-
scriptions from the input signal, (2) reconstruction of the input,
and (3) adversarial prediction of each of h1 and h2 from the
other. The objective of the first task is written as Equation 6.
The goal for the reconstruction task is to minimize the mean
squared error (MSE) between x and the reconstructed x′:

Lx = MSE(Recon([ψ(Enc1(x)), Enc2(x)]),x) (9)

where ψ means dropout. The training objective for the disen-
tanglers is to minimize the MSE between embeddings predicted
by the disentenglers and the embeddings generated from the en-
coder. However, that of the encoders is to generate h1 and h2

that are not predictive of each other. Hence, in the scheduled
update scheme, the targets t1 and t2 for the disentanglers are
different when updating the player models P1 versus P2, fol-
lowing [9]. The loss can be written as:

Ld = MSE(Dis1(Enc1(x)), t1) (10)

+ MSE(Dis2(Enc2(x)), t2)) (11)

where t1 and t2 are set as h2 and h1, respectively, when updat-
ing P2 but are set to random vectors when updating P1.

Overall, the model is trained through backpropagation by
optimizing the objective described in Equation 12, where the
loss-weights α, β, and γ are hyperparameters, which are de-
cided by the performance on the development set.

L = αLy + βLx + γLd (12)

Inference with NIESR involves a forward pass of data through
Enc1 followed by Dec. Hence, the usage and computational
cost of NIESR for inference is the same as the base model.

3. Experiments
The effectiveness of NIESR is quantified through the perfor-
mance improvement achieved by adopting the invariant learning
framework. We provide experimental results on speech recog-
nition on three benchmark datasets: the Wall Street Journal Cor-
pus (WSJ0) [18], CHiME3 [19], and TIMIT [20]. We addition-
ally provide results on the combined WSJ0+CHiME3 dataset.

Table 1: Hyperparameters for the base model.

Item Setting
Enc and Dec LSTM Dimension 200
Subsampling Projected Dimension 200
Attention Dimension 200
Attention Convolution Channel 10
Attention Convolution Kernel Size 100
Optimizer Adam
Learning Rate 5e-4

3.1. Datasets

WSJ0: This dataset is a collection of readings of the Wall Street
Journal. It contains 7,138 utterances in the training set, 410
in the development set, and 330 in the test set. We use 40-
dimensional log Mel filterbank features as the model input, and
normalize the transcriptions to capitalized character sequences.
CHiME3: CHiME3 dataset contains: (1) WSJ0 sentences spo-
ken in challenging noisy environments (real data) and (2) WSJ0
readings mixed with four different background noise (simulated
data). The real speech data was recorded in five noisy envi-
ronments using a six-channel tablet-based microphone array.
Training data consists of 1,999 real noisy utterances from four
speakers, and 7,138 simulated noisy utterances from 83 speak-
ers in the WSJ0 training set. In total, there are 3,280 utterances
in the development set, and 2,640 utterances in the test set con-
taining both real and simulated data. The speakers in training,
development, and test set are mutually different. In our experi-
ments, we follow [11] to use far-field speech from the fifth mi-
crophone channel for all sets. We adopt the same input-output
setting for CHiME3 as WSJ0.
TIMIT: This corpus contains a total of 6,300 sentences, with
10 sentences spoken by 630 speakers each with 8 different di-
alects. Among them, utterances from 168 different speakers
are held-out as the test set. We further select sentences from 4
speakers of each dialect group, i.e., 32 speakers in total, from
the remaining data to form the development set. Thus, all speak-
ers in training, development, and test sets are different. Models
were trained on 80 log Mel filterbank features and capitalized
character sequences were treated as targets.

3.2. Experiment Setup

We train the base model without using invariance induction, i.e.,
the model consisting of Enc and Dec (Section 2.1), as a base-
line. We feed the whole sequence of spectra features to Enc
and get the predicted character sequence from Dec. We use a
stack of two BLSTMs with a subsampling layer (as described in
Section 2.1) in between for Enc. Dec is implemented as a sin-
gle layer LSTM combined with attention modules introduced
in Section 2.1. All the models were trained with early stopping
with 30 epochs of patience and the best model is selected based
on the performance on the development set. Other model and
training hyperparameters are listed in Table 1.

We augment the base model with Enc2, Recon, Dis1,
and Dis2, while treating Enc as Enc1, to form the NIESR
model. Enc2 has the same hyperparameter setting and structure
asEnc1. Recon is modeled as a cascade of a BLSTM layer, an
upsampling layer, and another BLSTM layer. Dis1 and Dis2
are implemented as BLSTMs followed by two fully-connected
layers. We update the player models P1 and P2 in the fre-
quency ratio of 1 : 5 in our experiments. Hyperparameters for
Enc1 and Dec are the same as the base model. Additional hy-
perparameters for NIESR are summarized in Table 2.



Table 2: Hyperparameters for the NIESR model.

Item Setting
Recon LSTM Dimension 300
Upsampling Projected Dimension 200
Dis1, Dis2 Dimension 200
Dropout layer rate 0.4
Optimizer Adam
Learning Rate for P1 5e-4
Learning Rate for P2 1e-3
α, β, γ for WSJ0 100, 10, 1
α, β, γ for CHiME3 100, 1, 0.5
α, β, γ for TIMIT 100, 50, 1

Table 3: Speech recognition performance as CER (%). Values
in parentheses show relative improvement (%) over Base model.

Model WSJ0 CHiME3 TIMIT
Base 12.95 44.61 28.76

Spk-Inv 12.31 (4.94) 43.93 (1.52) 28.45 (1.08)
Env-Inv – 42.61 (4.48) –
Dial-Inv – – 28.29 (1.63)
NIESR 12.24 (5.48) 41.86 (6.16) 26.86 (6.61)

We further provide results of a stronger baseline model that
utilizes labeled nuisances z (speakers for WSJ0, speakers and
noise environment condition for CHiME3, speakers and dialect
groups for TIMIT) with the gradient reversal layer (GRL) [14]
to learn invariant representations. Specifically, the model con-
sists of Enc, Dec, and a classifier with a GRL between the
embedding learned from Enc and the classifier, following the
standard setup in [14]. The target for the classifier is to pre-
dict z from the embedding while the direction of the training
gradient to Enc is flipped. We denote this model as Spk-Inv
for speaker-invariance, Env-Inv for environment-invariance in
CHiME3, and Dial-Inv for dialect-invariance in TIMIT.

3.3. ASR Performance on Benchmark Datasets

Table 3 summarizes the results at end-to-end ASR on WSJ0,
CHiME3, and TIMIT datasets. Results show that NIESR
achieves 5.48%, 6.16%, and 6.61% relative improvements over
base model on WSJ0, CHiME3, and TIMIT, respectively, and
demonstrates the best CER among all methods.

3.4. Invariance to Nuisance Factors

In order to examine whether a latent embedding is invariant to
nuisance factors z, we calculate the accuracy of predicting the
factor z from the encoding. Specifically, this is calculated by
training classification networks (BLSTM followed by two fully-
connected layers) to predict z from the generated embeddings.
Table 4 presents results of this experiment, showing that the h1

embedding of the NIESR model, which is used for ASR, con-
tains less nuisance information than the h encoding of the base,
Spk-Inv, and Env-Inv models. In contrast, the h2 embedding of
NIESR contains most of the nuisance information, showing that
nuisance factors migrate to this embedding, as expected.

3.5. Additional Robustness through Data Augmentation

Training with additional data that reflects multiple variations
of nuisance factors helps models generalize better. In this ex-
periment, we treat the CHiME3 dataset, which contains WSJ0

Table 4: Results of predicting nuisance factor z from learned
representations as accuracy. Env stands for environment.

Dataset Predict z from Accuracy
z : Speaker z : Env

WSJ0

h in Base Model 67.91 –
h in Spk-Inv 65.60 –
h1 in NIESR 63.35 –
h2 in NIESR 97.92 –

CHiME3

h in Base Model 38.52 69.24
h in Spk-Inv 37.91 69.11
h in Env-Inv 38.84 66.44
h1 in NIESR 35.87 63.45
h2 in NIESR 92.28 97.05

Table 5: Test results of models trained on the WSJ0+CHiME3
augmented dataset as CER (%). Values in parentheses show the
relative improvement (%) over Base model.

Model WSJ0 CHiME3
Base 9.35 41.55

Spk-Inv 8.62 (7.81) 40.77 (1.88)
Env-Inv 9.17 (1.93) 40.27 (3.08)
NIESR 8.00 (14.44) 38.35 (7.7)

recordings with four different types of noise, as a noisy aug-
mentation for WSJ0. We train the base model and NIESR on the
augmented dataset, i.e. WSJ0+CHiME3, and test on the origi-
nal CHiME3 and WSJ0 test sets separately. Table 5 summarizes
the results on this experiment, showing that training with data
augmentation provides improvements on both CHiME3 and
WSJ0 datasets compared to the results in Table 3. It is important
to note that the NIESR model trained on the augmented dataset
achieves 14.44% relative improvement on WSJ0 as compared
to the base model trained on the same. This is because data
augmentation provides additional information about potential
nuisance factors to the NIESR model and, consequently, helps it
ignore these factors for the ASR task, even though pairwise data
is not provided to the model like [13]. Hence, results show that
the NIESR model can be easily combined with data augmenta-
tion to further enhance the robustness and nuisance-invariance
of the learned features.

4. Conclusion
We presented NIESR, an end-to-end speech recognition model
that adopts the unsupervised adversarial invariance framework
for invariance to nuisances without requiring any knowledge of
potential nuisance factors. The model works by learning a split
representation of data through competition between the recog-
nition and an auxiliary data reconstruction task. Results of
experimental evaluation demonstrate that the proposed model
achieves significant boosts in performance on ASR.
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