
Open-Vocabulary Keyword Spotting With Audio And Text Embeddings

Niccolò Sacchi1, Alexandre Nanchen2, Martin Jaggi1, Milos Cernak3

1École Polytechnique Fédérale de Lausanne 2Idiap Research Institute 3Logitech Europe S.A.
niccolo.sacchi@epfl.ch, alexandre.nanchen@idiap.ch, martin.jaggi@epfl.ch,

milos.cernak@ieee.org

Abstract
Keyword Spotting (KWS) systems allow detecting a set of spo-
ken (pre-defined) keywords. Open-vocabulary KWS systems
search for the keywords in the set of word hypotheses gener-
ated by an automatic speech recognition (ASR) system which
is computationally expensive and, therefore, often implemented
as a cloud-based service. Besides, KWS systems could use also
word classification algorithms that do not allow easily chang-
ing the set of words to be recognized, as the classes have to be
defined a priori, even before training the system. In this paper,
we propose the implementation of an open-vocabulary ASR-
free KWS system based on speech and text encoders that allow
matching the computed embeddings in order to spot whether a
keyword has been uttered. This approach would allow choos-
ing the set of keywords a posteriori while requiring low com-
putational power. The experiments, performed on two different
datasets, show that our method is competitive with other state
of the art KWS systems while allowing for a flexibility of con-
figuration and being computationally efficient.
Index Terms: Speech recognition, keyword spotting, open-
vocabulary, ASR-free, audio&text embeddings.

1. Introduction
Keyword Spotting (KWS) systems are in high demand nowa-
days as they enable a simple voice user interface to consumer
electronics devices. There are two kinds of KWS systems: (i)
closed-vocabulary, e.g. [1, 2], characterized by a small foot-
print model and trained on repetitions of the desired keywords
such as in the popular Google command and control dataset [3],
and (ii) open-vocabulary, e.g. [4, 5] that parse word or phoneme
lattices to spot the keywords and usually require an Automatic
Speech Recognition (ASR) system, and, thus, have a bigger
memory and computation footprint. A configuration of the
open-vocabulary KWS system is usually text-based; when au-
dio input is required for configuration, keyword spotting then
becomes a spoken query system. With the advent of end-to-end
modelling the distinction between ASR and ASR-free KWS ap-
proaches is diminished, as there are also ASR-free approaches
that still require cloud computing [6].

Our aim is to explore KWS architectures with the follow-
ing features: (i) versatile (open vocabulary), i.e. the set of key-
words is relatively small but not fixed, words may be added to
and removed from it without retraining any model, (ii) user-
friendly, i.e. new keywords could be added both in the form
of text, e.g. by typing the keyword, and in the form of audio,
e.g. by recording the keyword a few times, (iii) robust to the
detection of words that have not been used during training, (iv)
computationally-efficient, i.e. the architecture is thought to run
on small devices, e.g. speakers, headphones, cameras.

We have hypothesized that these goals can be achieved with
a system based on audio and text encoders which extract similar

embeddings for the same word (Figure 1). In this way, whether
a keyword is provided in the form of audio or text we would be
able to compute its embedding and compare it with the embed-
ding obtained from the input audio. A distance metric can be
used to detect whether the two embeddings are close enough,
i.e. whether they correspond to the same word. Therefore, just
by computing the embeddings representing the keywords we
can start detecting them from the input audio. In addition, there
is no limitation on which keyword should be used, i.e. this ap-
proach allows having a completely flexible set of keywords to be
detected which can be chosen by the user by both typing and/or
recording them.

Figure 1: Audio and text encoders extract a similar representa-
tion for inputs representing the same word.

Moreover, since the purpose of such encoders is in extract-
ing meaningful information from the input that might be noisy,
they are not only restricted to solve a classification task (what
is the label of this sample?) but they could also be employed in
verification (does the two samples have the same label?), clus-
tering (find common samples among all samples) and informa-
tion retrieval (fetch the K closest samples).

2. Triplet-loss Encoders
We devised two encoders. Firstly, we focused on an audio en-
coder (section 2.2), i.e. an encoder that maps the input audio
in an embedding space where clusters of word embeddings are
formed. Then, we devised an audio-text encoder (section 2.3)
that allows also obtaining embeddings of keywords for which
no audio samples are available but only their textual representa-
tion. Next section explains the training of the encoders.

2.1. Training With Triplets

To train an encoder that extracts a similar representation for au-
dio samples representing the same word, we have decided to
opt for the triplet loss [7]. The goal of this loss is to train an en-
coder that extract embeddings that allow easily discriminating
the classes in the embedding space. This goal is achieved by
selecting two samples with the same label, respectively called

anchor and positive, and a sample with a different label, called
negative. Then, all the three samples are encoded with the same
encoder and the triplet loss is applied to the three embeddings
as follows:

L(a, p, n) = |d(a, p)− d(a, n) +margin|+

where | · |+ is the hinge loss, a, p, n are respectively the anchor,
positive and negative embeddings, margin specifies a threshold
(if d(a, n) − d(a, p) > margin then the loss is 0) and d must
be a (sub-)differentiable distance metric used to compute the
distance between two embeddings. In particular, after perform-
ing different tests, we have decided to use squared euclidean
distance and a margin of 1. Applying this loss on a batch of
triplets simply results in averaging over them. However, train-
ing with this loss is known to be challenging and, in particular,
selecting wisely the triplets is crucial to both boost the training
of the encoder.

Motivated by [8], we have used the batch-hard technique
which consists in the selection of worst triplets over the batch,
thus leading to a greater loss and update the model parameters
and, also, a more stable convergence. The core idea is to first
form batches by randomly sampling P classes, e.g. P words,
and K samples of each class, e.g. K audio samples for each a
word, thus resulting in a batch of P × K samples. Each sam-
ple is encoded, i.e. a batch of P × K embeddings is com-
puted. Then, each embedding is treated as the anchor sample
exactly once and its hardest positive embedding, i.e. the far-
thest embedding with the same label, and its hardest negative
embedding, i.e. the closest embedding with a different label
are selected from the embeddings in the batch so to form the
triplets. P and K have to be carefully chosen depending on
the amount of noise in the dataset. In particular, with noisy
datasets, it is suggested to use small values of P and K as the
batch-hard technique is greatly sensitive to the presence of out-
liers and mislabeled samples. In our experiments we have found
that with P = 5 and K = 3 the train loss was nicely getting
lower and the encoder was learning to extract good embeddings.

2.2. Audio Encoder

We have trained an audio2word-vector (a2wv) encoder, to en-
code audio samples, each representing a single keyword. Such
encoder is implemented as a GRU network with two unidirec-
tional stacked layers, a hidden state (equal to the size of the
embeddings) of 64 floating point numbers and a dropout of 0.3
between the two stacked layers. Figure 2 depicts the trained
encoder.

The bottom plot shows one cluster (color) per word where
each dot is an embedding obtained by encoding an audio sam-
ple of someone speaking the corresponding word. Moreover,
unseen words are words that have not been used during train-
ing.

2.3. Audio-Text Encoder

Purpose of this encoder is to enable possibility to compute,
during the configuration phase of the KWS system, reference
keyword embeddings directly from their textual representation.
This solution requires both to train a phone encoder and also
a dictionary to map words to their sequence of phonemes, e.g.
hello 7→ HH,AH,L,OW . We now explain how phone em-
beddings are extracted from audio and from text and, then, how
they are merged into the final word embedding.

Figure 2: Embeddings obtained by a2wv encoding, each repre-
senting one word. For purpose of visualization the dimension-
ality of the embeddings has been reduced with t-SNE [9] to 2
dimensions.

2.3.1. Phone embeddings from audio

To obtain phone embeddings from audio we have implemented
an audio encoder similarly as the one explained in section 2.2.
However, there are two differences: (1) at the input, during
training, we feed phones (with boundaries) instead of words
and (2) since, clearly, no phone boundaries are provided during
testing, this encoder continuously outputs phone embeddings
while processing the audio. In particular, it is trained such that
each output embedding actually represents the last pronounced
phone, i.e. we expect the embedding of a phone to be computed
and provided at the output as soon as that phone is processed.
We call this model audio2phone-vectors (a2pvs) as it outputs
many embeddings from the input audio.

Moreover, since a phone often occupies more than one in-
put frame, a2pvs is designed so that it halves the dimension of
the input, i.e. it outputs one embedding every two processed
frames, therefore mitigating the problem of having more phone
embeddings at output than spoken phone in the input audio.
As we will explain in the next sections, this also helps having
a more similar amount of phone embeddings when extracting
them from text or from audio, thus helping in obtaining similar
word embeddings. Figure 3 depicts how a2pvs is used to extract
phoneme embeddings. Clearly, encoding phones is harder than
encoding words, indeed here we can notice that the clusters are
less discriminable than the clusters we obtained when encoding
words.

2.3.2. Phone embeddings from text

To obtain phone embeddings from the text we have used the
previously trained a2pvs. In particular, since there is a lim-
ited number of phones, we can use the phone encoder and a
dataset of spoken phones to build a 1-to-1 mapping table, called
phone2phone-vector (p2pv), that maps each phone to its aver-
age embedding, which is estimated by averaging over the em-
beddings obtained by encoding a few audio samples represent-
ing the phone. These average phone embeddings can be inter-
preted as the representations of the phones since they should be
an estimate of the center of the corresponding phone clusters.
While with a2pvs we can encode audio to obtain phone embed-
dings, for text we first use a dictionary to get the list of phones
corresponding to a word and, then, p2pv to map each phone to
its estimated average embedding. Note that, with this approach,
we expect to obtain similar phone embeddings from the text and
from audio representing the same phone.

Figure 3: a2pvs encodes the input audio sample to a sequence of embeddings so that each embedding represents the last pronounced
phone. The plot on the right displays embeddings (dots) that have been obtained after a phone has been pronounced.

Figure 4: Audio (dots) and text (stars) embeddings obtained with the audio-text encoder.

2.3.3. Encoding phone embeddings

Finally we train another encoder, called phone-vectors2word-
vector (pvs2wv), to merge all the phone embeddings, whether
obtained from audio or text, into the final word embedding.
pvs2wv is implemented as a GRU network to manage a vari-
able number of phone embeddings in input. Figure 4 depicts
the whole audio-text encoder and, in particular, how it encodes
audio (top) and text (bottom). To encode audio, first, a2pvs
encodes the audio sample to a sequence of phone embeddings,
then, pvs2wv encodes the latter to the word embedding. To en-
code text, embeddings are obtained by means of a dictionary
and of p2pv (c.f. section 2.3.2), then, the network pvs2wv is
used to encode the embeddings to the text embedding of the
word. On the plot on the right, each dot represents an embed-
ding obtained from audio while each star represents an embed-
ding obtained by encoding the textual representation of the cor-
responding word.

3. Keyword Spotting System
The KWS system we propose is made of two architectures: (i)
an encoder, which is trained to compute similar embeddings
from audio recordings and text representing the same word, (ii)
a classifier, which implements a metric to compare two embed-
dings and assess if they represent the same word. After en-
coders’ training, running such a KWS system consists of the
two following phases (Figure 5):

1. Configuration phase. The user will provide either some
recordings or the textual representation for each keyword
to be detected. The encoder is then used to compute (at
least) one reference embedding per keyword which are
stored and used during the detection phase.

2. Detection phase. The classifier uses the implemented

metric to compare each computed embedding with all
the reference keyword embeddings and, consequently,
maps each recording to the corresponding keyword, if
any.

Figure 5: The two phases of the KWS system: (1) configuration
phase, the keywords to be detected are provided either by text
or audio recording, (2) detection phase, the classifier maps each
computed input embedding to a prediction.

The approach we propose allows tackling also the cases in
which the user pronounces or types in a word that has not been
used during training, i.e. unseen words. In particular, the KWS
system can be configured to detect such words too.

3.1. Classifier

Independently of how the system is configured, the prediction is
obtained by selecting a keyword whose embedding is the closest
to the input embedding and by using a threshold. The latter
defines the minimum allowed distance to the closest keyword
embedding. Precisely, the classification is defined as follows:

c(x) =

{
argmini d(ei, f(x)) if ∃j s.t. d(ej , f(x)) < t

−1 otherwise

where c represents the classification function, x input audio to
be classified, d is the distance metric, f is the encoder, ei the

embedding of the i-th keyword, t the threshold and−1 indicates
that no keyword embedding is close enough, i.e. no keyword
has been detected.

4. Experimental Settings and Evaluation
We first evaluate the proposed systems, configuring them by
text and/or audio, on the evaluation test eval93 subset of
Wall Street Journal (WSJ) [10] and on keyword sets containing
only one keyword so to provide a proof of concept. Then, we
evaluate and compare our solutions with a baseline and on a big-
ger keyword set. The baseline for keyword spotting is an ASR
system based on Kaldi framework [11] with a lattice-free Max-
imum Mutual Information [12] model and a keyword grammar
with a phone-loop garbage model.

Both our systems and the baseline are trained on the
train si284 subset of WSJ data, preprocessed with 40 di-
mensional high resolution mel frequency cepstral coefficients.
Both systems use the same input features and data splits. We
used the test eval92 as a validation subset for our triplet
loss encoders. In the following evaluation we will refer to KWS
systems based on audio encoder and audio-text encoder as re-
spectively KWS-AE and KWS-ATE.

4.1. Evaluation on WSJ

We have built two different sets of words, each containing 101
words, which have to be detected in the input audio. One set
contains words that were used during the training of the en-
coders, i.e. seen, while the other contains words that were re-
moved from the train set, i.e. unseen. The purpose is to assess
how robust is our system to the detection of new words, even
when spoken by speakers that were not in the train set. Then,
we compute a DET curve for each each words in the sets and av-
erage them to obtain one DET curve for the seen keywords and
one for the unseen ones. Figure 6 shows the DET curves (in a
log-log plot for easier comparison) that have been obtained with
KWS systems that use the audio and audio-text encoders. The
latter has been configured both by text or by audio to evaluate
respectively the scenario in which a user provides the word in
the text format or records himself pronouncing it.

Figure 6: Average seen and unseen DET curves obtained a KWS
system employing either the audio or the audio-text encoder
configured by text or audio.

4.2. Evaluation on Logitech Command Dataset

Then, we evaluated the KWS system using a (proprietary) Log-
itech voice control dataset. We used a subset of 12 US English
native speakers and 14 keywords (commands). We followed the
evaluation protocol as described in [3] with 14 command labels,
one additional special label for ”Unknown Word”, and another
for ”Silence” (no speech detected). The ”Silence” category has
one-second clips extracted randomly from the background noise
audio files. Configuration of the KWS system has been done by

three audio samples per keyword to compute an average refer-
ence embedding. These samples were removed from the eval-
uation set. The test is then done by providing examples for
each of the 14 categories. The ”Unknown Word” category con-
tains commands randomly sampled from the Logitech dataset
and that are not part of the keywords.

4.2.1. Results

Figure 7 shows the computed DET curves. We observe that our
model a2wv is comparable with the Kaldi one. However, we
point out that a2wv is also greatly simpler and lighter which
would make it more feasible to be deployed on a small device.
Moreover, differently than the Kaldi model, our model has not
been specifically trained on any of the commands in the dataset.

Figure 7: DET curves computed with a2wv and Kaldi on the
Logitech Dataset.

5. Conclusions and Next Steps

We have proposed the architecture of an open-vocabulary KWS
system based on joint encoding audio and text. Being this ap-
proach ASR-free, it is computationally more efficient than an
ASR-based system, and no Language Model and no computa-
tionally expensive graph beam searches are required. In par-
ticular, the novelty of our work resides both in the idea of a
KWS system configurable either by audio or text and also in
the design of an audio-text encoder, which is capable of encod-
ing any word, whose phone sequence is available, to the same
embedding space in which also encoding of speech is mapped.
This approach would allow obtaining a very light KWS system
that the user/constructor can configure to detect any keyword of
their choice by either typing in or pronouncing the commands
they want to be detected.

Moreover, we trained a stream-oriented version of both the
audio and the audio-text encoders. In particular, these architec-
tures can be used to map the input audio stream to a stream of
embeddings in such a way that each computed embedding rep-
resent the last pronounced word. However, a classifier to detect
on-line in real-time keywords from this stream of embeddings
has still to be designed.

Our future work is to explore all the potential of this ap-
proach. In particular, we propose: (1) design of a stream-
oriented classifier that allows detecting keywords in real-time
from a stream of word embeddings computed by the encoder,
(2) training of the encoders on a more heterogeneous dataset so
to improve the robustness to the environment and make the sys-
tem more usable for real use-cases, (3) train bigger and more
powerful networks by means of transfer learning which we ob-
served greatly improving the training with triplet loss.

6. References
[1] T. N. Sainath and C. Parada, “Convolutional neural networks

for small-footprint keyword spotting,” in INTERSPEECH
2015, 16th Annual Conference of the International Speech
Communication Association, Dresden, Germany, September 6-10,
2015, 2015, pp. 1478–1482. [Online]. Available: http://www.isca-
speech.org/archive/interspeech 2015/i15 1478.html

[2] Y. Zhang, N. Suda, L. Lai, and V. Chandra, “Hello edge: Keyword
spotting on microcontrollers,” CoRR, vol. abs/1711.07128, 2017.
[Online]. Available: http://arxiv.org/abs/1711.07128

[3] P. Warden, “Speech commands: A dataset for limited-vocabulary
speech recognition,” CoRR, vol. abs/1804.03209, 2018. [Online].
Available: http://arxiv.org/abs/1804.03209

[4] I. Szöke, P. Schwarz, P. Matejka, L. Burget, M. Karafiát,
M. Fapso, and J. Cernocký, “Comparison of keyword spotting
approaches for informal continuous speech,” in INTERSPEECH
2005 - Eurospeech, 9th European Conference on Speech
Communication and Technology, Lisbon, Portugal, September 4-
8, 2005, 2005, pp. 633–636. [Online]. Available: http://www.isca-
speech.org/archive/interspeech 2005/i05 0633.html

[5] J. Trmal, M. Wiesner, V. Peddinti, X. Zhang, P. Ghahre-
mani, Y. Wang, V. Manohar, H. Xu, D. Povey, and
S. Khudanpur, “The kaldi openkws system: Improving
low resource keyword search,” in Interspeech 2017, 18th
Annual Conference of the International Speech Communica-
tion Association, Stockholm, Sweden, August 20-24, 2017,
2017, pp. 3597–3601. [Online]. Available: http://www.isca-
speech.org/archive/Interspeech 2017/abstracts/0601.html

[6] J. Guo, K. Kumatani, M. Sun, M. Wu, A. Raju, N. Ström,
and A. Mandal, “Time-delayed bottleneck highway networks us-
ing a dft feature for keyword spotting,” in 2018 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2018, pp. 5489–5493.

[7] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet:
A unified embedding for face recognition and cluster-
ing,” CoRR, vol. abs/1503.03832, 2015. [Online]. Available:
http://arxiv.org/abs/1503.03832

[8] A. Hermans, L. Beyer, and B. Leibe, “In defense of the triplet
loss for person re-identification,” CoRR, vol. abs/1703.07737,
2017. [Online]. Available: http://arxiv.org/abs/1703.07737

[9] L. van der Maaten and G. Hinton, “Visualizing data
using t-SNE,” Journal of Machine Learning Research,
vol. 9, pp. 2579–2605, 2008. [Online]. Available:
http://www.jmlr.org/papers/v9/vandermaaten08a.html

[10] D. B. Paul and J. M. Baker, “The design for the wall street journal-
based csr corpus,” in Proceedings of the Workshop on Speech
and Natural Language, ser. HLT ’91. Stroudsburg, PA, USA:
Association for Computational Linguistics, 1992, pp. 357–362.
[Online]. Available: https://doi.org/10.3115/1075527.1075614

[11] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz,
J. Silovsky, G. Stemmer, and K. Vesely, “The kaldi speech recog-
nition toolkit,” in IEEE 2011 Workshop on Automatic Speech
Recognition and Understanding. IEEE Signal Processing So-
ciety, Dec. 2011, iEEE Catalog No.: CFP11SRW-USB.

[12] D. Povey, V. Peddinti, D. Galvez, P. Ghahremani, V. Manohar,
X. Na, Y. Wang, and S. Khudanpur, “Purely sequence-trained
neural networks for ASR based on lattice-free MMI,” in
Interspeech 2016, 17th Annual Conference of the International
Speech Communication Association, San Francisco, CA, USA,
September 8-12, 2016, 2016, pp. 2751–2755. [Online]. Available:
https://doi.org/10.21437/Interspeech.2016-595

