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Abstract
There has been huge progress in speech recognition over the
last several years. Tasks once thought extremely difficult, such
as SWITCHBOARD, now approach levels of human perfor-
mance. The MALACH corpus (LDC catalog LDC2012S05),
a 375-Hour subset of a large archive of Holocaust testimonies
collected by the Survivors of the Shoah Visual History Foun-
dation, presents significant challenges to the speech commu-
nity. The collection consists of unconstrained, natural speech
filled with disfluencies, heavy accents, age-related coarticula-
tions, un-cued speaker and language switching, and emotional
speech - all still open problems for speech recognition systems.
Transcription is challenging even for skilled human annotators.
This paper proposes that the community place focus on the
MALACH corpus to develop speech recognition systems that
are more robust with respect to accents, disfluencies and emo-
tional speech. To reduce the barrier for entry, a lexicon and
training and testing setups have been created and baseline re-
sults using current deep learning technologies are presented.
The metadata has just been released by LDC (LDC2019S11).
It is hoped that this resource will enable the community to build
on top of these baselines so that the extremely important infor-
mation in these and related oral histories becomes accessible to
a wider audience.
Index Terms: Accented Speech, Disfluent Speech

1. Introduction
There has been huge progress in speech recognition over the last
several years. Tasks previously considered merely hard, such
as open vocabulary voice search and voice messaging, are now
in wide deployment across popular consumer devices such as
smartphones [3] and smart speakers [4]. Tasks once thought
extremely difficult, such as SWITCHBOARD, have now ap-
proached levels of human performance [5, 6]. The casual public
now believes speech recognition is a solved problem. It is a fair
question to ask what problems remain unsolved in the speech
recognition area, and what research is there left to perform.

In [7] it is argued that there are many areas in which speech
recognition systems still lack robustness, especially when com-
pared to levels of human performance. Some of these areas in-
clude accented speech, highly disfluent speech, and emotional
speech. A major difficulty lies in the lack of appropriate pub-
licly available speech recognition corpora. The community
evaluates on SWITCHBOARD, Wall Street Journal, and Lib-
rispeech [8, 9] because the data is easy to obtain (i.e., rela-
tively minor or no cost to access); they have few or no usage
restrictions (e.g. effectively limited to educational institutions
or evaluation participants); and there are well documented and
defined setups of training and test data accompanied by easy-
to-duplicate speech recognition baselines.

There do exist public corpora that exhibit one or more of

Figure 1: Large Spoken Archive Search System Architecture
proposed in MALACH [14]

these various phenomena. For example, there are disfluencies in
SWITCHBOARD, accented speech in the Mozilla corpus [10],
and very informal speech in the AMI corpus [11]. However,
very few corpora demonstrate all these phenomena - SWITCH-
BOARD is relatively accent free, the Mozilla Corpus is read
speech, etc. The 1996/1997 LDC releases of the Broadcast
News corpus [12] classified the data across a variety of acoustic
conditions, including non-native speech, but the total amount of
such speech was quite small. There are certainly other very di-
verse corpora, such as the corpus that comprised the MGB [13]
challenge, but the usage license was accompanied by a number
of restrictions. Of course, large industrial organizations have
huge labelled databases but these are not available in any fash-
ion to the community.

The goal of the NSF-Sponsored MALACH project [14]
was to develop techniques to automate searching of large spo-
ken archives. The underlying spoken archive, the Visual His-
tory Archive® was created by Steven Spielberg’s The Survivors
of the Shoah Visual History Foundation (VHF) [15]. It was
founded to preserve the stories of survivors and witnesses of the
Holocaust. It had created what still remains to be the largest col-
lection of digitized oral history interviews on a single subject:
almost 55,000 interviews in 42 languages, a total of 115,000
hours of audio and video.

In order to automate the creation of a large spoken search-
able archive, a high-level architecture was proposed [14] and is
shown in Figure 1. It can be seen that accurate speech recogni-
tion is the linchpin of such a system. Without accurate speech
recognition, concepts of interest cannot be located, annotated,
and searched, and all but the simplest types of queries will fail.

Although half of the collection is in English, the testi-
monies were collected from survivors whose native language
was not English. The collection consists of unconstrained, nat-
ural speech filled with disfluencies, heavy accents, age-related
coarticulations, un-cued speaker and language switching, and
emotional speech. Although the recordings consist of relatively
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high-quality audio, transcription is challenging even for skilled
human annotators. The speech recognition challenge is there-
fore obvious. When first proposed as a research project, the
speech recognition task was thought to be nearly impossible.
As will be discussed, accurate recognition still remains a chal-
lenge even to today’s highly sophisticated systems.

Several hundred hours of English testimonies were pro-
vided to the members of the project team to build speech recog-
nition systems and to also serve as a basis for experiments in
search technologies. In 2012, approximately 375 hours of En-
glish testimonies were released to the Linguistic Data Consor-
tium (LDC) [1] along with human transcripts for approximately
200 hours of data so that researchers could use this data to study
phenomena ranging from speech recognition performance to
socio-linguistic phenomena. (A similar Czech corpus was re-
leased in 2014 [16]). Unfortunately, training and testing setups
were not defined, limiting uptake by the broader speech com-
munity.

This paper proposes that the MALACH corpus be utilized
to study ways of making speech recognition systems more ro-
bust with respect to accents, disfluencies and emotional speech.
Training and testing setups, a lexicon, and a scoring file are de-
scribed (and just released by LDC [2]). Baseline results using
current deep learning technologies are also presented. The hope
is that this will enable the community to more easily pick up
the work to make advances in speech recognition so that the ex-
tremely important information in these and related oral histories
becomes easily accessible.

The rest of the paper is broken up as follows. Section 2
reviews earlier speech recognition results on MALACH, Sec-
tion 3 describes basic training and test setups. Section 4
presents details of the baseline systems, Section 5 describes
some additional modeling improvements, and Section 6 sug-
gests future work.

2. Prior Speech Recognition Results
The MALACH project ran from 2001-2006. As that time, the
dominant speech recognition technology was speaker-adaptive
processing [17], sometimes combined with more sophisticated
techniques such as MMI/MPE training [18] or (by the end of
the project) fMPE processing [19]. Most of these technologies
have now been subsumed by deep learning variants. It is still
useful to review some of these early recognition results on this
corpus for comparison with what will hopefully be improved
results due to more recent speech recognition technology devel-
opments.

Measured perplexities on the task range from 72-180 de-
pending upon how much speech was used (65/200 hours) and
what and how other language model (LM) sources were inter-
polated (SWITCHBOARD/Broadcast news) [20].

Recognition performance numbers ranged from 43.8% for
a SAT model trained on 65 hours of speech and an interpo-
lated language model with SWB and Broadcast News data [20]
to 38.3% when 200 hours of manual transcriptions are utilized
[21]. Even better results (32.3%) were reported in [21] but 600
hours of unlabelled data were included and this additional data
is not available in the LDC corpus.

3. Proposed Training and Testing Partitions
The MALACH corpus previously released through the LDC
consists of selections from 784 interviews ranging from approx-
imately 15 minutes to 30 minutes in length. There were many

ways in which the 784 interviews could have been divided into
training and test data. In the interest of continuity with prior
work [20, 14, 21] and to allow us to leverage the data prepara-
tion that was originally performed, we decided to use as many
of the transcribed portions of the conversations that were orig-
inally used for training and testing in older work and were ac-
tually released as part of [1]. This yielded 674 conversations
from the original 693 interviews used for training and 8 from
the original 10 interviews used for testing. Informal experi-
ments comparing error rates on the abbreviated test data relative
to the original test data did not reveal any appreciable change in
overall WER. This leaves 102 additional conversations that can
be used for a broader test set to evaluate aspects of disfluencies,
emotional speech, etc., or rolled into the training data.

Using the above split, we defined a basic training and test
set. The basic training data set consists of 176 hours of manu-
ally transcribed speech and the test data consists of 3.1 hours.
The basic training data as extracted from the supplied tran-
scripts consists of 1.3M tokens. In these 1.3M tokens, approx-
imately 44K tokens were marked as filled pauses and 15K to-
kens were marked as partial words (disfluencies). Note that sec-
tions of the interview containing highly emotional speech were
tagged by the transcriber and marked as such in the interview.
We found in the 674 training interviews 522 explicitly tagged
emotional events. The test set did not contain any such events,
but the unused (transcribed) interviews contain 65 such events
(and might be useful for some simple experiments in emotional
tagging). The proposed test set contains 26K tokens. Of these
tokens, 93.3% are covered by the tokens in the training set.

To further allow for comparison to previously reported re-
sults on MALACH, a minitest of 1.5 hours was created. It is
identical to the test data reported on in previous MALACH work
[14] except for the two conversations (four speakers) that were
not released publicly. All results presented in this paper are
on this minitest, as the full test set is still undergoing verifica-
tion. The training vocabulary covered 98.1% of the tokens in
the minitest.

4. Baseline Results
As described in Section 2, the original MALACH results were
based on an older generation of speech recognition technology.
Since then, due to the success of deep learning, there has been
a major revolution in speech recognition. Systems today are
almost unrecognizable from those of 10-15 years ago, and tech-
nology changes on almost a daily basis.

To better situate results in a compact historical perspective,
a set of increasingly complex systems were built ranging from
basic context-dependent state-based hidden Markov models all
the way through to LSTM-based hybrid models.

4.1. Acoustic Processing

The interviews in the standard distribution are provided as two-
channel MP2 files. Although two separate microphones were
used to collect data from the interviewer and the interviewee,
placement was sometimes arbitrary, channel failures occured
sporadically, and the microphones were sometimes switched in
the middle of an interview. In most cases, the transcriber in-
dicated for which channel the interviewee dominated, and that
was the channel chosen for downstream processsing. For the
test data, the best channels for both the interviewee and the in-
terviewer were chosen manually.

In this study, the manual segmentations determined by the



transcribers were used for both training purposes (these segment
boundaries are included in the MALACH distribution). For test-
ing, the segmentations went through an additional pass of man-
ual verification. The average segment length in the test data was
6.2 seconds.

The interviews were provided at a sampling rate of 44.1
KHz. The channels were separated and downsampled to 16
KHz. The input feature space consisted of 40-dimensional log-
mel or PLP features after first applying global cepstral mean
and variance normalization followed by utterance-based cep-
stral mean normalization.

4.2. Lexical and Language Modeling

The text used for training the acoustic model (Section 4.3) was
taken verbatim from the MALACH interview transcriptions in
the original LDC distribution. The transcriptions indicated dis-
fluencies and various types of noises. In these experiments, the
noises were eliminated from the transcripts with the assumption
that during training they would be incorporated into the silence
model automatically (which seemed to be the case), but partial
words and filled pauses were left as lexical entries in the training
text.

One of the most challenging aspects of MALACH is the
large number of named entities, particularly of a foreign (non-
US) nature. While common words exist in any number of
easily available pronunciation lexicons (e.g., CMUDICT [22]),
names, foreign words, and partial words are not present. To cre-
ate the MALACH lexicon, a grapheme-to-phoneme system [23]
followed by manual correction was utilized for those words not
found in standard lexicons.

The language model was a 4-gram model created from
the acoustic model training text using modified Kneser-Ney
smoothing [24]. Disfluencies were stripped out (informal ex-
periments suggested that blindly treating them as lexical en-
tries hurt more than helped for recognition). Although earlier
MALACH work [20] had reported gains from interpolation with
other text sources, no such process was performed in this work.
The perplexity of the minitest was 92.

4.3. Acoustic Modeling

A set of acoustic models were built ranging from a basic
context-dependent hidden Markov model trained using a max-
imum likelihood criterion up to a bi-directional LSTM model
employing multistream features and trained with a sMBR [25]
(state-level minimum Bayes risk) criterion. All training was
done utilizing the IBM Attila toolkit [26] version 2.7 except for
the LSTM model. The LSTM model was trained using PyTorch
[27]. Neither data augmentation nor non-MALACH data was
employed.

The Attila training recipes for context-dependent hidden
Markov models, vocal tract length normalization, feature space
adaptation, and feature space and model space MMI training
are all described in [26] and will not be reproduced here. The
only important thing to note is that the final decision tree con-
sisted of 5000 context dependent states; no attempt was made
to optimize this number for best recognition performance.

The training for DNN and CNN hybrid models was also
performed from a native implementation in the IBM Attila
toolkit. The inputs to the DNN were nine-frame 40-dimensional
PLP features after VTLN, LDA, and feature-space normaliza-
tion (FSA). The inputs to the CNN were eleven-frame 40-
dimension logmel features with deltas and delta-deltas after
VTLN is applied. Neural network configurations for both the

DNN and CNN are described in [28]. For the cross entropy
(XE) training criterion, layerwise pre-training was followed by
fine-tuning for 15 epochs on the entire network. The networks
were optimized using simple stochastic gradient descent (SGD)
with no particular bells or whistles. For the sequence training
criterion, the Hessian-free (HF) optimization process described
in [29] was used starting from the fully trained cross-entropy
network.

The LSTM had the following configuration. The inputs
were logmel features (as above) augmented by delta and delta-
delta features. The network consisted of four bidirectional lay-
ers of 512 units each, followed by a 256-unit linear projection
layer into the 5000 context-dependent unit output layer. Train-
ing for the cross-entropy criterion was done using Nesterov-
based momentum with gradient clipping and a droput factor of
.25. The input was divided into minibatches of 256 21-element
non-overlapping sequences each and trained on a single GPU.

4.4. Basic Speech Recognition Performance

All recognition results were obtained using the IBM Attila
toolkit [26]. Table 1 displays Word Error Rate (WER) results
on the mini-devset. All scoring was performed using the NIST
Scoring package SCTK-2.4.10 [30]. A global mapping (GLM)
file (see SCTK documentation) was used to normalize spelling
variants. Disfluencies were marked as optional for scoring (no
penalty if deleted).

System MALACH 50-Hour
minitest Broadcast News

Context-Dependent 40.8 26.5
VTLN+FSA+MLLR 33.4 20.8
fMMI+BMMI+MLLR 29.8 15.5
DNN+XE 29.2 17.2
CNN+XE 28.7 15.9
DNN+HF 27.2 14.8
CNN+HF 26.8 13.7
LSTM 25.9 13.5
+splicing 25.4
+sMBR 23.9
+LSTM-LM 21.7

Table 1: Word error rates as a function of Acoustic Model for
MALACH data and Broadcast News data.

Performance using simpler acoustic models is roughly sim-
ilar to what was obtained during the time of the original
MALACH project when these sorts of models were consid-
ered state-of-the-art. Speaker adaptation helps as well as dis-
criminative training in the form of fMMI and BMMI. Deep
learning-based models produce further performance improve-
ments. CNNs perform better than DNNs, and the sequence
training criterion produces better results than cross-entropy.
The LSTM model produces the overall best results (even with-
out sequence training).

For comparison, results on the DEV-04f component using a
50-hour training subset of Broadcast News (BN) data described
in [31] are included. The trends on BN are similar to MALACH
but the performance is appreciably better. This is no surprise
insofar as the speakers are largely professional announcers who
are native speakers of American English, but illustrates the chal-
lenge that speech recognition still faces when presented with
disfluent, emotional speech from non-native English speakers.



5. Additional Recognition Results
In [5] one of the simpler but more successful techniques to
produce acoustic model improvements was the application of
feature fusion - specifically, combining logmel features with
feature-space adapted features. To obtain better complementar-
ity, a 64-dimensional filter bank was created and used to extract
logmel, delta, and delta-delta parameters. Both sets of features
were spliced into a 232-dimensional input vector. The system
was then trained identically to that of the LSTM system and
obtained a WER of 25.4% (vs 25.9%) (Table 1).

The models were then trained with the state-level sMBR
criterion using synchronous stochastic gradient with momen-
tum. The numerator statistics for the sMBR training came
from a precomputed forced alignment of the training data, while
the denominator statistics came from lattices that are generated
on demand. To speed up training, parallel workers were used
to compute the gradients. A large number of utterances per
batch were used to ensure that reliable gradients are obtained,
and because the gradients for different batches are computed
from a differing number of frames, gradients are normalized by
the number of frames prior to performing parameter updates.
The trainer is implemented using the PyTorch distributed
module. For the training runs in this paper, 12 workers are used,
480-utterance batches, a learning rate of 1.0, and a momentum
of 0.9. Only one epoch of training is performed because ad-
ditional epochs do not improve test performance of the acous-
tic model. The resultant final word error rate was 23.9% (Ta-
ble 1), a significant gain over the 25.4% reported for the LSTM
on spliced parameters alone.

Lastly, an LSTM based NN language model (NNLM) was
trained. Similar to the count models, the NNLM was trained on
the acoustic transcription only (1.3M running words). However,
10% of the sentences were selected for cross-validation (CV) to
control the learning rate schedule. The NNLM has a word em-
bedding layer with a size of 256, and three unidirectional LSTM
layers, each with 512 nodes. Before the softmax-based estima-
tion of the 24k-dimensional posterior vector, the feature space
was reduced to 128 by a linear bottleneck layer. The model has
15M parameters. In the field of small-scale language modeling,
it is a well known phenomenon that the best performing model
has an order of magnitude more parameters than the number of
available observations [32]. In order to avoid over-fitting and
co-adaptation of nodes, various dropout techniques were used
[33, 34]. In each LSTM layer, DropConnect with a 30% ratio
was applied on the hidden-to-hidden transformation matrix. In
addition, 30% of the outputs were also dropped out. These two
dropout parameters were set to 20% in the embedding layer.
The initial learning rate was set to 0.01, and Nesterov momen-
tum of 0.9 was also used. After 30 epochs of training, the learn-
ing rate was annealed by a factor of 1/

√
2 over 10 steps. The

final model has a perplexity of 70.8 on the CV set. The lattices
from the best LSTM acoustic model were generated using the
4-gram LM and rescored with this LSTM language model. The
final error rate was 21.7% (Table 1), a significant drop in error
rate relative to the sMBR number of 23.9%.

6. Discussion
As can be seen from the above results, although recent tech-
nology advances have made significant inroads in performance,
MALACH remains a challenging speech recognition task. To
put things in perspective, the error rate on the popular Lib-
rispeech read speech corpus when trained using the 100-hour

clean subset of the training data using a DNN with p-norm and
a heavily pruned language model is 9.19% [35] (compared to
the DNN-HF on MALACH of 27.2%); Broadcast News trained
comparably (above) is at 13.5% (vs. 25.7% for MALACH), and
one of the most difficult public corpora containing relatively
clean acoustic data, the close-talking microphone component of
the spontaneous multi-person AMI corpus [11] is at 19.2% [36].

Much additional work needs to be done on this data to es-
tablish a true state-of-the-art baseline for this task. All of the
above results represents a “pure play” on MALACH - no ad-
ditional data is being utilized. Early work on MALACH [20]
suggests that interpolation of MALACH text data with other
sources, such as Broadcast News and SWITCHBOARD, im-
proves performance. It is also reasonable to believe that acous-
tic adaptation from a much larger well-trained system might
also produce better results than just starting from scratch from
the limited amount of MALACH training data. Careful inspec-
tion of the test results revealed that a number of issues still re-
mained with respect to the accuracy of the manual segmenta-
tion. Multiple additional verification passes are needed to really
obtain a “gold standard” reference script even for the minitest.
Last, both the minitest and the full test set contain many sen-
tence fragments making it more difficult for a long-span lan-
guage model such as an LSTM to really “kick in” to improve
peformance; a complete resegmentation (and expansion) of the
test data is really needed.

7. Summary

The MALACH corpus is re-introduced as an important cor-
pus because of its societal interest and to challenge the speech
recognition community in areas such as modeling of accents,
disfluencies, and emotional speech. A range of systems were
built spanning traditional HMMs all the way to hybrid LSTM-
based acoustic and language models. The best system (trained
purely on 176 hours of manually transcribed speech and as-
sociated transcripts) presents a 21.7% WER, compared to the
best results published during the original MALACH program
of 32.1% using 600 hours of transcribed and untranscribed data
and a language model interpolated with SWITCHBOARD and
Broadcast News data. This demonstrates that while enormous
strides in speech recognition have been made, today’s systems
still have some distance to go before being able to accurately
transcribe difficult data such as MALACH. To enable the com-
munity to continue research on this important corpus, the train-
ing and test set definition, a reference lexicon, the GLM file,
and other data useful for building and testing speech recogni-
tion systems is now available from LDC [2].
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