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Abstract

Modeling directly raw waveforms through neural networks for
speech processing is gaining more and more attention. Despite
its varied success, a question that remains is: what kind of infor-
mation are such neural networks capturing or learning for dif-
ferent tasks from the speech signal? Such an insight is not only
interesting for advancing those techniques but also for under-
standing better speech signal characteristics. This paper takes
a step in that direction, where we develop a gradient based ap-
proach to estimate the relevance of each speech sample input
on the output score. We show that analysis of the resulting “rel-
evance signal” through conventional speech signal processing
techniques can reveal the information modeled by the whole
network. We demonstrate the potential of the proposed ap-
proach by analyzing raw waveform CNN-based phone recog-
nition and speaker identification systems.
Index Terms: deep learning, CNN visualization, raw wave-
forms

1. Introduction
Deep neural networks have become an integral part of many
pattern recognition systems. In speech or audio related clas-
sification tasks, most deep learning systems are fed with
intermediate features such as Mel-frequency cepstral coeffi-
cients (MFCCs) [1], filterbank outputs with a linear [2] or Mel
scale [3] and spectrograms [4, 5]. However, in this case the
input feature will have only limited spectral information con-
strained by the defined filter-bank type, magnitude compression
or time-frequency resolution, which in turn influences the over-
all model architecture for a particular speech application. It
has been shown that a perceptually designed filter bank is not
always guaranteed to be the best for different speech applica-
tions. Hence, several studies have tried to address this issue
with a waveform-based CNN that directly takes raw speech sig-
nal as input such as in speech recognition [6, 7, 8], emotion
recognition [9], speaker recognition [10], voice activity detec-
tion [11], presentation attack detection [12, 13] and speech en-
hancement [14]. While these approaches have led to perfor-
mance improvements, there is limited understanding about the
information that is being modeled by the CNNs.

Depending upon whether the block processing is set or de-
termined, we can split the approaches into two categories. In the
first category, the block processing is based on standard short-
term or “segmental” processing (processing a signal of about
1 − 3 pitch period duration) [8, 11, 7, 14]. In the context of
speech recognition, in [8] it was observed that the convolution
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filters, modeling 35ms of speech signal, tend to behave as a log-
spaced frequency selective filter-bank. Whilst, in [15], some of
the filters in the second convolution layer were found to behave
like multi-resolution RASTA filters. In the second category, the
block processing is determined during the training process in a
task dependent manner [6, 13, 10]. In this case, it was found that
for speech recognition the first layer of the CNN models “sub-
segmental” speech signal (signal of duration below one pitch
period) and captures formant information [16, 17]. In speaker
recognition task, it was found that segmental modeling focuses
on voice source related [10], while sub-segmental modeling fo-
cuses on vocal tract system related information [18]. Similar
observations have been made for the task of gender recogni-
tion [19]. These understandings are limited in the sense that
they have been gained by analyzing the first or second convolu-
tion layers. They do not necessarily reveal the information that
is being modeled as a whole from the input speech.

On the other hand, understanding what information is mod-
eled as a whole is an active field of research in computer vision.
In particular, it has been shown that gradient-based methods can
help in visualizing the influence of each pixel in the input im-
age on the prediction score via a relevance map [20, 21, 22, 23].
While this visualization technique has been used in the case of
neural networks fed with spectrograms [24], it is not straightfor-
ward to use it in the case of raw waveforms. This present paper
develops a gradient-based temporal and spectral relevance map
extraction approach to understand the task-dependent informa-
tion modeled by the CNN-based system. In this approach, for a
given input-target pair, the contribution of each input sample is
first estimated and then analyzed using signal processing tech-
niques. To the best of our knowledge, this is the first work that
enables to visualize and analyze what is learned by an entire
neural network trained on raw waveforms.

Section 2 presents the relevant background work. Sec-
tion 3 presents the gradient-based visualization approach and
Section 4 demonstrates its utility through a phone recognition
and a speaker identification case study. Finally, Section 5 con-
cludes the paper.

2. Relevant Background
The gradient-based visualization technique described in this pa-
per can be used on any type of neural network trained on raw
waveforms. However, in this paper we focus on the approach
that was first proposed for phone/speech recognition [6, 17] and
has been later extended to other tasks, such as speaker recog-
nition [10, 18], presentation attack detection [13] and gender
recognition [19]. It corresponds to the second category of CNN-
based approaches, where the block processing of the signal is
determined during the training process. The network architec-
ture consists of several convolution layers, followed by fully
connected layers and a softmax layer.



Figure 1: Illustration of the first convolution layer processing.

Fig. 1 illustrates processing at the first convolution layer.
At each time frame, the CNN takes an input signal of length
wseq . kW and dW are the kernel width and shift, respectively,
which decides the block processing applied on the signal. nf
denotes the number of filters in each layer. In order to gain
insight into the information that is being modeled, two levels of
analysis have been proposed [17]. The first level of analysis is
the visualization of the cumulative frequency of the convolution
filters:

Fcum =

nf∑
k=1

Fk/‖Fk‖2, (1)

where Fk is the magnitude spectrum of convolution filter fk.
The second level of analysis interprets the convolution filters
collectively as a spectral dictionary, leading to a sparsity point
of view to understanding the spectral information that is being
modeled by CNN via analyzing the frequency response of filters
to a given input. The magnitude frequency response s of the
input signal x ∈ RkW is computed as:

s =

∣∣∣∣∣
nf∑
k=1

〈x, fk〉 DFT[fk]

∣∣∣∣∣ . (2)

These analysis methods have helped in gaining insight into
the works on speech recognition, presentation attack detec-
tion, speaker recognition and gender recognition [6, 13, 10, 19].
However, they are limited to the first layer and do not provide
information about what the CNN has learned as a whole.

3. Gradient-based Visualization
In this section, we describe the gradient-based visualization
method used in this paper.

3.1. Image processing

Visualization of what is captured by neural networks, especially
by CNNs, is a very active field of research for image process-
ing. Most visualization methods fall into three categories: 1)
input perturbation-based methods, where the neural network is
treated as a black box and the effect of altering the input image
on the prediction score is measured, e.g., by occluding parts of
the input [22]; 2) reconstruction-based methods [25, 20], where
the idea is to synthesize or find among several images the input
that maximizes the response of a unit of interest in the network;
3) gradient-based methods, which is the focuses of this paper.

In gradient-based methods, the gradient of a specific output
unit, which is usually the one yielding the highest score, is com-
puted with respect to each pixel of the input image. It measures
how much a small variation of each pixel value will impact the
prediction score. This corresponds to measuring the importance
of each input value for the prediction. The result has the same
size as the input image and is referred to as “relevance” map or
“contribution” map. Several gradient-based methods have been

proposed [22, 20, 21], and essentially they only differ by how
the gradient of rectified linear units (ReLU) is computed during
backpropagation. In this work, we use the Guided Backprop-
agation (GBP) method [21], as it has been shown to yield the
sharpest results. In this method, the gradient at a ReLU layer is
zero either if the gradient coming from above is negative or if
the data value coming from below is negative. It is equivalent
to computing the gradient of a ReLU function (as it is defined
mathematically) but keeping only the gradients that have a pos-
itive values, i.e. a positive impact on the score prediction.

(a) original image (b) relevance map

Figure 2: Original image, taken from the imageNet database
and corresponding relevance map obtained with GBP method

We show in Fig. 2 an example of such a visualization. The
original image is taken from the imageNet database [26]. The
relevance map, in Fig 2b, was obtained1 with a VGG16 [27]
trained on imageNet. We observe that the pixels that have a
high impact on the classification results correspond to the two
cats, while the pixels in the other parts of the image (stairs, wall,
door...) are not important.

3.2. Speech processing

(a) Input waveform (b) Relevance signal

(c) Autocorrelation
Figure 3: Analysis of the relevance signal obtained with GBP
method with a CNN trained for speaker identification.

The result of directly applying the Guided Backpropagation
method in the case of raw waveforms is shown in Fig. 3a and
3b. Visualization in the time domain does not bring much in-
sights into what important characteristics are extracted by the
network because the results are difficult to interpret, as we do
not have any visual cues as in the case of images. Fig. 3c shows
the auto-correlations of a short segment of the input waveform
and its corresponding relevance signal. It can be observed that
the relevance signal contains information related to the period-
icity of the speech signal. This suggests that spectral level in-
terpretation could provide better insights.

1https://github.com/ramprs/grad-cam.



Let x = [x0 . . . xN−1] be a raw audio frame, belonging
to class c, which is fed to a neural network. Next, discarding
the softmax layer so as to remove influence from other classes,
consider yc the output unit corresponding to the class c. The
gradient in the time domain with respect to input sample is de-
fined as f [n] = ∂yc

∂xn
, n = 0, . . . N − 1. We want to com-

pute the gradient of the output unit yc with respect to each
frequency bin of the Fourier transform of the input waveform.
That is, we want to visualize the impact of each frequency bin
on the output. Thus, we want to compute g[k] = ∂yc

∂Xk
where

Xk =
∑N−1
n=0 xn exp(−i 2πkn

N
). However, a real-valued non-

constant function with complex-valued parameters does not ful-
fill the Cauchy-Riemann equations and is thus not differen-
tiable. One can instead use the Wirtinger derivatives [28]. Ap-
plying the chain rule, one can express the two measures as:

∂yc

∂Xk
=

N−1∑
n=0

∂yc

∂xn

∂xn
∂Xk

=
1

N

N−1∑
n=0

∂yc

∂xn

∂
∑N−1
j=0 Xje

i 2πjn
N

∂Xk

=
1

N

N−1∑
n=0

∂yc

∂xn
ei

2πkn
N =

1

N

N−1∑
n=0

f [n]ei
2πkn
N

(3)
Thus,

g[k] = DFT−1{f [n]}, (4)

which is complex and symmetric. The spectral relevance map
can be visualized by plotting |g[k]|, for k = 0, . . . , dN

2
e − 1.

The derivation is simplified by dropping the complex conjugate
part in the Wirtinger chain rule and by assuming that x and its
DFT have the same dimension N . For a more rigorous deriva-
tion, the reader is referred to [29].

While this approach is correct, the input signal x usually
spans 250 − 500 ms and cannot be assumed to be stationary.
Thus, instead of computing the inverse DFT of f [n] in (4) we
compute the inverse short time Fourier transform.

4. Case studies: Phone classification and
Speaker Identification

This section presents case studies on phone classification and
speaker identification to show the utility of analyzing spectral
relevance signals in understanding raw waveform CNNs.

4.1. Systems description

The phone classification and speaker identification systems are
both trained on the TIMIT database. The phone classifier is
trained following the protocol in [17]. The hyper-parameters
are presented in Table 1. The input to the network is of length
250ms. The CNN is composed of three convolutional layers,
followed by a fully connected layer. Each convolution is fol-
lowed by a max pooling with a kernel width and shift of 3 sam-
ples and by a ReLU activation function. In the original study the
hyper-parameters were obtained through cross validation on the
development set. The system yields phone error rate of 22.8%
on the development set, and 23.6% on the test set. The architec-
ture and hyper-parameters of the speaker identification system
are taken from [18] and detailed in Table 1. The architecture
consists of two convolutional layers, followed by a fully con-
nected layer. The CNN was trained to classify the 462 speakers
in the training set of the TIMIT phone recognition setup. For
each speaker, 9 utterances were used for training the CNN and
1 utterance is used for validation. The utterance-level accuracy
obtained on the validation set is 98.3%.

Table 1: Hyper-parameters of the phone classification and
speaker identification systems. nf denotes the number of fil-
ters in the convolution layer. nhu denotes the number of hidden
units in the fully connected (FC) layer. kW and dW denote
kernel width and kernel shift (stride).

phone classification speaker identification
kW dW nf /nhu kW dW nf /nhu

Conv1 30 10 80 30 10 80
Conv2 7 1 60 10 1 80
Conv3 7 1 60 - - -
FC - - 1024 - - 100

(a) Original (b) Relevance signal

Figure 4: F0 contours for an example waveform and its rele-
vance signal obtained for the phone classification system.

4.2. Phone Classification

4.2.1. Visualization and analysis of relevance signals

Fig. 4 shows the original waveform and the relevance signal cor-
responding to the phone /ah/ along with their pitch frequency F0
contours obtained using Praat toolkit [30]. We observe that the
two signals are different in the temporal domain, however the F0
contours are similar. Fig. 5a and 5d show the short-term spec-
trum of the sound /ah/ produced by a male and a female speaker
in exactly the same phonetic context (i.e., speaking the same
text) in the TIMIT corpus. Fig. 5b and 5e show the short-term
spectrum of the corresponding spectral relevance signals. The
analysis window size used was of length 25 ms. We observed
that, although the original signal and relevance signal differ in
temporal domain, the harmonic structure and the envelop struc-
ture are similar. In particular the first and second formants.

4.2.2. Quantitative analysis

In order to ascertain that the relevance signal contains indeed
F0 and formant information, we performed a quantitative study
on the American English Vowels (AEV) dataset [31]. We chose
this database because the steady state durations, F0 and formant
information are available. The analysis is done for 48 female
and 45 male speakers following the standard protocol. In the
steady state region, we computed F0 and first two formants (F1
and F2). The formants were computed using 16th order linear
prediction analysis and is averaged over a context of 10 frames
around the centre frame in the steady state region. We consider
that the F0 and formant values are correct if it is within the
range F±∆, where F is the F0, F1 or F2 value and ∆ is the
respective standard deviation as specified in the AEV dataset.
Table 2 shows the average percentage accuracy of F0, F1 and
F2 values for different phonemes. As it can be seen that the F0,
F1 and F2 estimated from the relevance signal match well with
the estimates provided in the AEV dataset. This shows that,
despite the CNN modeling sub-segmental speech signal (about
2ms) at the input layer, the network as a whole is capturing both
F0 and formant information.



(a) female: original (b) female: RS for phone classification (c) female: RS for speaker identification

(d) male: original (e) male: RS for phone classification (f) male: RS for speaker identification

Figure 5: Example of original and relevance signals (RS) for vowel /ah/, overlaid with spectral envelop and LP spectra.

Table 2: Average accuracy in (%) of fundamental and for-
mant frequencies of vowels produced by 45 male and 48 female
speakers, estimated from relevance signal of AEV dataset.

/ah/ /eh/ /iy/ /oa/ /uw/

F0 F 93 91 91 94 92
M 92 90 89 93 90

F1 F 90 92 93 91 93
M 88 92 92 89 93

F2 F 94 94 94 95 94
M 94 93 94 94 93

(a) Original (b) Relevance signal

Figure 6: F0 contours for an example waveforms and its rele-
vance signal obtained for the speaker identification system.

4.3. Speaker Identification
Fig. 6 presents an example speech signal and the corresponding
relevance signal for this system along with their F0 contours.
similar to the case of phone classification, the two signals are
very different in the time domain, however the F0 contours are
similar. Figs. 5c and f show the short-term spectrum of the rel-
evance signals, corresponding to the signals in Figs. 5a and d.
The observations on these two plots are consistent with what we
found on many examples belonging to different speakers and
are the following. First, there is a peak in the low frequencies.
Secondly, there are two high frequency regions that are empha-
sized: between 2000 and 3500 Hz and between 3500 and 5000
Hz. This is consistent with other studies [32, 33, 34] on TIMIT,
where authors performed an analysis of which frequency sub-
bands are the most useful for speaker discrimination using ei-

ther F-ratio measure [32, 33, 34] or vector ranking method [34].
They found that mid/high frequencies were discriminative: re-
spectively between 2500Hz and 4000Hz [32], between 2000Hz
and 4000Hz [33] and between 3000Hz and 4500Hz [34].

The CNNs trained for speaker identification and for phone
classification applies the same block processing on the raw
waveforms, i.e, both process 30 samples with a 10 samples
shift. However, we observe that the relevance signals are very
different. We performed informal listening tests on the rele-
vance signals obtained with the two CNNs and found that the
relevance signal obtained with phone classification CNN is “in-
telligible”, while the relevance signal of the speaker identifica-
tion CNN is not.

5. Discussion and Conclusion
Inspired from computer vision research, this paper extends the
gradient-based visualization approach for understanding CNN-
based systems, which take the raw signal as input. Through case
studies on phone classification and speaker identification tasks,
we showed that the relevance signal obtained through guided
backpropagation can be analyzed using conventional speech
signal processing techniques to gain insight into the informa-
tion modeled by the whole neural network. These case studies
also bring out the limitations of the spectral dictionary based
approach to analyze first convolution layer (presented in Sec-
tion 2). More precisely, spectral dictionary based analysis ap-
plied on phone classification task reveals that the CNN is mod-
eling formant information [17] but it does not reveals that F0
information is also modeled. Similarly, on speaker identifica-
tion task, a contrast between the findings of sub-segmental CNN
analysis with the findings reported in [18] shows that F0 model-
ing and emphasis on high frequency regions is not revealed by
the spectral dictionary based approach.

The relevance signal provides clues about the information
modeled from the input signal by the whole neural network.
However, it does not explains how the neural network is able to
achieve that. Our future work will focus along that direction,
where we aim to extend the proposed gradient-based approach
to unravel the information modeled between the different inter-
mediate layers and the output.
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