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Abstract

Learning good representations is of crucial importance in deep
learning. Mutual Information (MI) or similar measures of sta-
tistical dependence are promising tools for learning these rep-
resentations in an unsupervised way. Even though the mutual
information between two random variables is hard to measure
directly in high dimensional spaces, some recent studies have
shown that an implicit optimization of MI can be achieved with
an encoder-discriminator architecture similar to that of Genera-
tive Adversarial Networks (GANSs).

In this work, we learn representations that capture speaker
identities by maximizing the mutual information between the
encoded representations of chunks of speech randomly sampled
from the same sentence. The proposed encoder relies on the
SincNet architecture and transforms raw speech waveform into
a compact feature vector. The discriminator is fed by either
positive samples (of the joint distribution of encoded chunks)
or negative samples (from the product of the marginals) and is
trained to separate them.

We report experiments showing that this approach effec-
tively learns useful speaker representations, leading to promis-
ing results on speaker identification and verification tasks. Our
experiments consider both unsupervised and semi-supervised
settings and compare the performance achieved with different
objective functions.

Index Terms: Deep Learning, Speaker Recognition, Mutual
Information, Unsupervised Learning, SincNet.

1. Introduction

Deep learning has shown remarkable success in numerous
speech tasks, including speech recognition [1-4] and speaker
recognition [5|6]. The deep learning paradigm aims to de-
scribe data by means of a hierarchy of representations, that are
progressively combined to model higher level abstractions [/7].
Most commonly, deep neural networks are trained in a super-
vised way, while learning meaningful representations in an un-
supervised fashion is more challenging but could be useful es-
pecially in semi-supervised settings.

Several approaches have been proposed for deep unsuper-
vised learning in the last decade. Notable examples are deep
autoencoders [8]], Restricted Boltzmann Machines (RBMs) [9],
variational autoencoders [[10] and, more recently, Generative
Adversarial Networks (GANSs) [11]. GANs are often used in
the context of generative modeling, where they attempt to mini-
mize a measure of discrepancy between a distribution generated
by a neural network and the data distribution. Beyond genera-
tive modeling, some works have extended this framework to
learn features that are invariant to different domains [[12] or to
noise conditions [[13]]. Moreover, we recently witnessed some
remarkable attempts to learn unsupervised representations by
minimizing or maximizing Mutual Information (MI) [14-17].
This measure is a fundamental quantity for estimating the sta-
tistical dependence between random variables and is defined

as the Kullback-Leibler (KL) divergence between the joint dis-
tribution over these random variables and the product of their
marginal distributions [18]. As opposed to other metrics, such
as correlation, MI can capture complex non-linear relationships
between random variables [[19]. MI, however, is difficult to
compute directly, especially in high dimensional spaces [20].
The aforementioned works found that it is possible to maximize
or minimize the MI within a framework that closely resembles
that of GANs. Additionally, [[15] has further proved that it is
even possible to explicitly compute it by exploiting its Donsker-
Varadhan bound.

Here we attempt to learn good speaker representations by
maximizing the mutual information between two encoded ran-
dom chunks of speech sampled from the same sentence. Our ar-
chitecture employs both an encoder, that transforms raw speech
samples into a compact feature vector, and a discriminator. The
latter is alternatively fed by samples from the joint distribution
(i.e. two local encoded vectors randomly drawn from the same
speech sentence) and from the product of marginal distributions
(i.e, two local encoder vectors coming different utterances). The
discriminator is jointly trained with the encoder to maximize the
separability of the two distributions. We called our approach
Local Info Max (LIM) to highlight the fact that it is simply
based on randomly sampled local speech chunks. Our encoder
is based on SincNet [21,22], which efficiently processes the raw
input waveforms with learnable band-pass filters based on sinc
functions.

The experimental results show that our approach learns use-
ful speaker features, leading to promising results on speaker
identification and verification tasks. Our experiments are con-
ducted in both unsupervised and semi-supervised settings and
compare different objective functions for the discriminator. We
release the code of LIM within the PyTorch-Kaldi toolkit [23]].

2. Speaker Representations based on MI

The mutual information between two random variables z; and
2o 1s defined as follows:
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where D, is the Kullback-Leibler (KL) divergence between
the joint distribution p(z1, 22) and the product of marginals
p(21)p(z2). The MI is minimized when the random variables
z1 and z» are statistically independent (i.e., the joint distribution
is equal to the product of marginals) and is maximized when the
two variables contain the same information (in which case the
MI is simply the entropy of any one of the variables).

Our LIM system, depicted in Fig[T} aims to derive a com-
pact representation z. The encoder fo, with f : RY — RM j
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Figure 1: Architecture of the proposed system for unsupervised
learning of speaker representations. The speech chunks ci1 and
c2 are sampled from the same sentence, while cyqnaq is sampled
from a different utterance.

fed by N speech samples and outputs a vector composed of M
real values, while the discriminator g, with g : R2M 5 R, s
fed by two speaker representations and outputs a real scalar. We
learn the parameters © and @ of the encoder and the discrimina-
tor such that we maximize the mutual information M1 (z1, 22):

(6, %) = arg max MI(z1, z2), 2)
0,o

where the two representations z; and 22 are obtained by encod-
ing the speech chunks c; and cz that are randomly sampled from
the same sentence. Note that one reliable factor that is shared
across chunks within each utterance is the speaker identity. The
maximization of M1(z1,z22) should thus be able to properly
disentangle this constant factor from the other variables (e.g.,
phonemes) that characterize the speech signal but are not shared
across chunks of the same utterance.

As shown in Alg. [I] the maximization of MI relies on a
sampling strategy that draws positive and negative samples from
the joint and the product of marginal distributions, respectively.
As discussed so far, the positive samples (z1, 22) are simply
derived by randomly sampling speech chunks from the same
sentence. Negative samples (z1, zrna), instead, are obtained
by randomly sampling from another utterance. The underly-
ing assumptions considered here are the following: (1) two ran-
dom utterances likely belong to different speakers, (2) each sen-
tence contains a single speaker only. Under these assumptions,
that naturally hold in most of the available speech datasets, our
method can be regarded as unsupervised (or, more precisely,
self-supervised) because no speaker labels are explicitly used.

A set of Nsqmp positive and negative examples is sampled
to form a minibatch X = {X,, X,,}. The minibatch X feeds
the discriminator go, that is jointly trained with the encoder.
Given z1, the discriminator gs has to decide whether its other
input (22 or z,-,q) comes from the same sentence or from a dif-
ferent one (and generally a different speaker). Differently to the
GAN framework, the encoder and the discriminator are not ad-
versarial here but must cooperate to maximize the discrepancy
between the joint and the product of marginal distributions. In

Algorithm 1 Learning speaker representation with MI

1: while Not Converged do
2 for i=1 to Nsamp do
3 Sample a chunk ¢; from a random utterance.
4 Sample another chunk c2 from the same utterance.
S: Sample a chunk ¢, q from another utterance.
6 Process the chunks with the encoder:
7 z1 = fo(cr), z2 = fo(c2), zrna = fo(Crnd)-
8 Create positive and negative samples:
9: Xpli]=(z1,22), X [i]=(21,2rnd)-
10: Compute discriminator outputs: g(Xp), g(Xn).
11: Compute Loss L(O, ®).
12: Compute Gradients %, g—é.
13: Update © and ¢ to maximize L.

other words, we play a max-max game rather than a min-max
one, making it easier to monitor the progress of training (com-
pared to GAN training), simply as the average loss of the dis-
criminator.

Different objectives functions can be used for the discrim-
inator. The simplest solution, adopted in [14], [[17] and [24],
consists in using the standard binary cross-entropy (BCE) los

L(©, ®) = Ex, [log(g(z1, 22))] + Ex, [log(1 - g(z1, 2rna))],
3)
where Ex, and Ex,, denote the expectation over positive and
negative samples, respectively. Such a metric estimates the
Jensen-Shannon divergence between two distributions rather
than the KL divergence. Consequently, this loss does not op-
timize the exact KL-based definition of MI, but a similar diver-
gence between two distributions. Differently from standard MI,
this metric is bounded (i.e., its maximum is zero), making the
convergence of the architecture more numerically stable.
As an alternative, it is possible to directly optimize the MI
with the MINE objective [15]:

L(©,®) = Ex, [g(21, 22)] — log (Ex, [e?* )] )

MINE explicitly computes MI by exploiting a lower-bound
based on the Donsker-Varadhan representation of the KL diver-
gence. The third alternative explored in this work is the Noise
Contrastive Estimation (NCE) loss proposed in [[16], that is de-
fined as follows:
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where the minibatch X is composed of a single positive sample
and N —1 negative samples. In [|16] it is proved that maximizing
this loss maximizes a lower bound on MI.

All the aforementioned objectives are based on the idea
of maximizing a discrepancy between the joint and product of
marginal distributions. Nevertheless, such losses might be more
or less easy to optimize within the proposed framework.

The unsupervised representations z are then used to train
a speaker-id classifier in a standard supervised way. Beyond
unsupervised learning, this paper explores two semi-supervised
variations for learning speaker representations. The first one is

I The output layer must be based on a sigmoid when using BCE.



based on pre-training the encoder with the unsupervised param-
eters and fine-tuning it together with the speaker-id classifier.
As an alternative, we jointly train encoder, discriminator, and
speaker-id networks from scratch. This way, the gradient com-
puted within the encoder not only depends on the supervised
loss but also on the unsupervised objective. The latter approach
turned out to be very effective, since the unsupervised gradient
acts as a powerful regularizer.

Similarly to [25H29], we propose to directly process raw
waveforms rather than using standard MFCC, or FBANK fea-
tures. The latter hand-crafted features are originally designed
from perceptual evidence and there are no guarantees that such
inputs are optimal for all speech-related tasks. Standard fea-
tures, in fact, smooth the speech spectrum, possibly hinder-
ing the extraction of crucial narrow-band speaker characteris-
tics such as pitch and formants, that are important clues on the
speaker identity. To better process raw audio, the encoder is
based on SincNet [21122]], a novel Convolutional Neural Net-
work (CNN) that encourages the first layer to discover more
meaningful filters. In contrast to standard CNNs, which learn all
the elements of each filter, only low and high cutoff frequencies
of band-pass sinc-based filters are directly learned from data,
making SincNet suitable to process the high-dimensional audio.

3. Related Work

Similarly to this work, other attempts have recently been made
to learn unsupervised representations with mutual information.
In [[14], a GAN that minimizes MI using positive and negative
samples has been proposed for Independent Component Anal-
ysis (ICA). A similar approach can be used to maximize MI.
In [[16] authors proposed a method called Contrastive Predicting
Coding (CPC), that learns representations by predicting the fu-
ture in a latent space. It uses an autoregressive model optimized
with a probabilistic contrastive loss. In [[17] authors introduced
DeepInfoMax (DIM), an architecture that learns representations
based on both local and high-level global information.

The proposed LIM differs from the aforementioned works
in the following way: DIM performs a maximization of MI be-
tween local and global representations, CPC relies on future
predictions, while our method is simply based on random lo-
cal sampling. Note that training using local embeddings only
is very efficient since it does not require the expensive com-
putation of a global representation as in GIM. LIM is also re-
lated with the recently-proposed methods based on triplet loss
[30L31]l. Most of the previous works on triplet loss (with the
exception of [32]]) rely on the speaker labels [31]]. Moreover,
they simply maximize the Euclidean or cosine distance between
speaker embeddings. LIM, instead, is based on maximizing the
mutual information, thus considering a more meaningful diver-
gence that can also capture complex non-linear relationships
between the variables. Maximum Mutual Information (MMI)
is often used in HMM-DNN speech recognition as a loss func-
tion [33]]. This loss maximizes the MI between the acoustic
probabilities and the targeted word sequence in a standard su-
pervised framework, while LIM is used in a totally different un-
supervised context that relies on local speech embeddings. Our
work also uses SincNet [21}/22]] (that is here used for the first
time in an unsupervised framework), and extends the previous
works by also addressing semi-supervised learning where en-
coder, discriminator, and speaker-id classifier are jointly trained
from scratch. Moreover, to the best of our knowledge, this pa-
per is the first that compares several objective functions for MI
optimization in a speech task.

4. Experimental Setup

The proposed method has been evaluated using different cor-
pora. In the following, an overview of the experimental setting
is provided.

4.1. Corpora

This paper considered the TIMIT (462 spks, train chunk) [34],
Librispeech (2484 spks), and VoxCelebl (1251 spks) [35]] cor-
pora. To make TIMIT and Librispeech speaker recognition
tasks more challenging, we only employed 12-15 seconds of
randomly selected training material for each speaker. More-
over, a set of TIMIT and Librispeech experiments have also
been performed in distant-talking reverberant conditions. In
this case, all the clean signals were convoluted with a different
impulse response, that was sampled from the DIRHA dataset
[36}/37]. The DIRHA corpus contains high-quality multi-room
and multi-microphone impulse responses, that were measured
in a domestic environment with a considerable reverberation
time of Ts0 = 0.7s. This way, we are able to provide exper-
imental evidence in a much more challenging acoustic scenario
and we can introduce a channel effect that is not natively present
in the clean TIMIT and Librispeech corpora. To study our ap-
proach using a more standard speaker recognition dataset, we
also employed the VoxCelebl1 corpus (using the provided lists).

4.2. DNN Setup

The waveform of each speech sentence was split into chunks
of 200 ms (with 10 ms overlap), which were fed into the Sinc-
Net encoder. The first layer of the encoder performs sinc-based
convolutions, using 80 filters of length L = 251 samples. The
architecture then employs two standard convolutional layers,
both using 60 filters of length 5. Layer normalization [38]] was
used for both the input samples and for all convolutional layers.
Next, two fully-connected leaky-ReLU layers [39] composed
of 2048 and 1024 neurons (normalized with batch normaliza-
tion [40,41]) were applied. Both the discriminator and the
speaker-id classifier are fed by the encoder output and consist of
MLPs based on a single ReLU layer. Frame-level speaker clas-
sification was obtained from the speaker-id network by applying
a softmax output layer, that provides a set of posterior probabil-
ities over the targeted speakers. A sentence-level classification
was derived by averaging the frame predictions and voting for
the speaker which maximizes the average posterior. Training
used the RMSprop optimizer, with a learning rate I = 0.001,
a = 0.95, ¢ = 1077, and minibatches of size 128. All the
hyper-parameters of the architecture were tuned on TIMIT, then
inherited for Librispeech and VoxCeleb as well.

The speaker verification system was derived from the
speaker-id neural network using the d-vector technique. The
d-vector [35,/42|] was extracted from the last hidden layer of the
speaker-id network. A speaker-dependent d-vector was com-
puted and stored for each enrollment speaker by performing an
L2 normalization and averaging all the d-vectors of the different
speech chunks. The cosine distance between enrolment and test
d-vectors was then calculated, and a threshold was then applied
on it to reject or accept the speaker. Note that to assess our ap-
proach on a standard open-set speaker verification task, all the
enrolment and test utterances were taken from a speaker pool
different from that used for training the speaker-id DNN.



5. Results

This section summarizes our experimental activity on speaker
identification and verification.

5.1. Speaker Identification

Tab. [I] reports the sentence-level classification error rates
achieved with binary cross-entropy (BCE), MINE, Noise Con-
structive Estimation (NCE), and the triplet loss used in [31]].

TIMIT Librispeech
CNN SincNet | CNN  SincNet
Unsupervised-Trip. Loss | 2.84 222 1.46 1.33

Unsupervised-MINE 2.15 1.36 1.43 0.94
Unsupervised-NCE 2.05 1.29 1.14 0.82
Unsupervised-BCE 1.98 1.21 1.12 0.75

Table 1: Classification Error Rate (CER%) obtained on TIMIT
(462 spks) and Librispeech (2484 spks) speaker-id tasks using
LIM embeddings learned with various objective functions.

The table highlights that our LIM embeddings contain in-
formation on the speaker identity, leading to a CER(%) rang-
ing from 2.84% to 1.21% in all the considered settings. It is
worth noting that mutual information losses (i.e., MINE, NCE,
BCE) outperform the triplet loss. This result suggests that bet-
ter embeddings can be derived with a divergence measure more
meaningful than the simple cosine distance. The best perfor-
mance is achieved with the standard binary cross-entropy. Sim-
ilar to [17]], we have observed that this bounded metric is more
stable and more easy to optimize. Both MINE and NCE objec-
tive are unbounded and their value can grow indefinitely dur-
ing training, eventually causing numerical issues. The perfor-
mance achieved with Librispeech is better than that observed
for TIMIT. Even though the former is based on more speak-
ers, its utterances are on average longer than the TIMIT ones.
The table also shows that SincNet outperforms a standard CNN.
This confirms the promising achievements obtained in [21}22]]
in a standard supervised setting. SincNet, in fact, converges
faster and to a better solution, thanks to the compact sinc filters
that make learning from high-dimensional raw samples easier.

Tab. [2]extends previous speaker-id results to other training
modalities, including supervised and semi-supervised learning
in both clean and reverberant acoustic conditions.

TIMIT Librispeech

Clean Rev | Clean Rev

Supervised 0.85 348 | 080 17.1
Unsupervised-BCE 121 282 | 0.75 152

Semi-supervised-pretr. | 0.69 254 | 0.56 9.6
Semi-supervised-joint 0.65 24.6 | 0.52 9.3

Table 2: Classification Error Rate (CER%) obtained on
speaker-id with supervised, unsupervised and semi-supervised
modalities in clean and reverberat conditions.

From the table, it emerges that the results achieved
when feeding the classifier with our speaker embeddings
(unsupervised-BCE) are often better than those obtained with
the standard supervised training (supervised). The gap be-
comes more evident when we pass from unsupervised to semi-
supervised learning. In particular, the joint semi-supervised

framework (i.e., the approach that jointly trains encoder, dis-
criminator, and speaker classification for scratch) yields the best
performance, surpassing the performance obtained when pre-
training the encoder and then fine-tuning it with the supervised
task (Semi-supervised-pretr.). The internal representations dis-
covered in this way are influenced by both the supervised and
the unsupervised loss. The latter one acts as a powerful regu-
larizer, that allows the neural network to find robust features.
The results also show a significant performance degradation in
distant-talking acoustic conditions. The presence of consider-
able reverberation and the introduction of channel/microphone
variabilities, in fact, make speaker-id particularly challenging.

5.2. Speaker Verification

We finally extend our validation to speaker verification on the
VoxCeleb corpus. Table [3] compares the Equal Error Rate
(EER%) achieved using our best system (Semi-supervised-
pretr.) with some previous works on the same dataset.

EER (%)
GMM-UBM |35 15.0
I-vectors + PLDA [35]] 8.8
CNN [35] 7.8
CNN + intra-class + triplet loss [43] 7.9
SincNet [21]] 7.2
SincNet+LIM (proposed) 5.8

Table 3: Equal Error Rate (EER%) obtained on speaker verifi-
cation (using the VoxCeleb corpus).

The proposed model reaches an EER(%) of 5.8% and out-
performs other systems such as an I-vector baseline [[35,44], a
standard CNN [35]], and a CNN based on combination of intra-
class and triples loss [43]]. Finally, LIM outperforms a standard
SincNet model trained in a fully supervised way [21]]. This re-
sult confirms the effectiveness of the proposed approach even in
an open-set text-independent speaker verification setting.

6. Conclusion

This paper proposed a method for learning speaker embed-
dings by maximizing mutual information. The experiments
have shown promising performance on speaker recognition and
have highlighted better results when adopting the standard bi-
nary cross-entropy loss, that turned out to be more stable and
easier to optimize than other metrics. It also highlighted the
importance of using SincNet, confirming its effectiveness when
processing raw audio waveforms. The best results are obtained
with end-to-end semi-supervised learning, where an ecosystem
of neural networks composed of an encoder, a discriminator,
and a speaker-id must cooperate to derive good speaker embed-
dings. Our achievement can be easily combined with other re-
cent findings in speaker recognition. For instance, it is possible
to use LIM to extract semi-supervised x-vectors. We can also
improve it by employing an attention mechanism that weights
the contribution of each time frame, or by combing our semi-
supervised costs with other losses, such as the center loss.
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