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Abstract
Traditional automatic speech recognition (ASR) systems of-
ten use an acoustic model (AM) built on handcrafted acous-
tic features, such as log Mel-filter bank (FBANK) values. Re-
cent studies found that AMs with convolutional neural networks
(CNNs) can directly use the raw waveform signal as input.
Given sufficient training data, these AMs can yield a compet-
itive word error rate (WER) to those built on FBANK features.
This paper proposes a novel multi-span structure for acoustic
modelling based on the raw waveform with multiple streams
of CNN input layers, each processing a different span of the
raw waveform signal. Evaluation on both the single channel
CHiME4 and AMI data sets show that multi-span AMs give a
lower WER than FBANK AMs by an average of about 5% (rel-
ative). Analysis of the trained multi-span model reveals that the
CNNs can learn filters that are rather different to the log Mel-
filters. Furthermore, the paper shows that a widely used single
span raw waveform AM can be improved by using a smaller
CNN kernel size and increased stride to yield improved WERs.
Index Terms: acoustic modelling, raw waveform, convolu-
tional neural network, multi-span

1. Introduction
Automatic speech recognition (ASR) systems usually consist of
an acoustic model (AM) that captures the acoustic and phonetic
properties of the speech signal and a language model (LM) pro-
viding linguistic and syntactic context information at the word-
level. Traditional AMs are normally built on handcrafted acous-
tic features, such as log Mel-filter bank values (FBANK) or their
approximate linear decorrelations known as Mel frequency cep-
stral coefficients (MFCCs) [1]. These handcrafted acoustic fea-
tures are broadly based on models from human speech produc-
tion and perception [2, 3] so that they are not optimised toward
the training criterion of the AM and might thus discard valuable
information from the raw waveform signal.

For AMs based on hidden Markov models (HMMs) with
diagonal Gaussian mixture output distributions, a compact fea-
ture representation such as MFCCs was required [4]. However
with the resurgence of artificial neural networks (ANNs), along
with increasing computational power, there are far fewer restric-
tions on the input features, and using the raw waveform signal
now becomes an interesting alternative to handcrafted acous-
tic features [5, 6]. AMs built on the raw waveform signal input
make no prior assumptions about the data, which allows the AM
to learn the most suitable raw waveform feature representation
given sufficient training data. Active research work has been
carried out for the use of raw waveform features for acoustic
modelling since 2014 [6–8], and has yielded competitive word
error rates (WERs) to the standard approach using MFCC or
FBANK features. In [6], a 35ms window of the raw wave-
form signal is fed into a convolutional neural network (CNN)

layer with rectified linear unit (ReLU) [9] activation for time-
frequency decomposition, followed by max-pooling and loga-
rithm layers to imitate the logarithm compression of FBANK
features.
Analogous to a frame, it produces a feature vector which is fed
into a second CNN layer [10], similar to the AMs applying a
frequency convolution over FBANK features [11]. In [8], the
first CNN layer also performs a temporal convolution while the
second CNN layer extracts the spectral envelope followed by
logarithm or root compression [2]. Seventeen consecutive out-
put vectors from the second CNN layer are then stacked to have
a total input span of 291ms, and the resulting output vector is
fed into a deep neural network (DNN) with 12 fully connected
layers. Non-linearities other than max-pooling with more dis-
criminative kernels can be used to aggregate the output of the
CNN input layer [7]. Zhu et al. [12] proposed another struc-
ture in which CNN layers with different kernel sizes are con-
figured to learn features of different time-frequency resolutions
within a 20ms window, similar to wavelets [13]. Several other
studies have investigated the use of raw waveform signal input
from multiple microphones in far-field ASR [14, 15]. Analysis
of the trained CNN layers with raw waveform input reveals a
strong similarity between the learned kernels and audiological
distributed narrow band pass filters such as log-Mel filter banks
[6, 7, 16]. This finding has reaffirmed the effectiveness of using
handcrafted acoustic feature inputs and has inspired joint train-
ing of only some of the feature extraction pipeline with the AM
[17–19]. However, it also motivates trying to learn feature rep-
resentations that are different to handcrafted acoustic features,
e.g. [12]. In this paper, we propose a novel multi-span AM
structure which combines multiple input streams to learn more
diverse feature representations from different spans of the same
raw waveform input. Each stream uses a stack of two consec-
utive CNN layers and each span is configured using the same
kernel size but different stride numbers for temporal convolu-
tions. Single channel experimental results on far-field CHiME4
data show that a 5 layer DNN with three streams outperformed
the FBANK AM. It can be observed that the learned filters are
rather different to the log-Mel ones. It may also noted that a
set of small CNN kernels each having just 50 trainable param-
eters outperforms the set of larger CNN kernels each having
400 trainable parameters normally used for raw waveform in-
put [5, 8, 14, 16]. These findings are validated by experiments
with data from headset microphones from the AMI data set. The
paper is structured as follows.
In Sec. 2, CNNs are revisited for raw waveform signal input.
Section 3 explains in detail the proposed multi-span AM struc-
ture. The experimental setup and results on CHiME4 and AMI
are given in Sec. 4 and Sec. 5, with discussion in Sec. 6, fol-
lowed by conclusions.
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2. Revisiting CNNs with Waveform Input
CNNs [20] are powerful ANN models that can learn complex
feature representations, as has been shown in image recognition
with raw pixel input [20, 21]. Excluding the bias for simplicity,
a CNN layer consists of K trainable kernels, w1,w2, . . . ,wK .
Each kernel wk is convolved over T input samples of the raw
waveform signal xT

1 with a stride S (denoted by ∗S):

ỹk = wk ∗S xT
1 (1)

where ỹk denotes the k-th (one dimensional) output feature
map. The output from a CNN layer at each time step comprises
of K output feature maps, and the size of each map M can be
determined by

M = b(T − L)/Sc+ 1, (2)

where L is the kernel size and S the stride.
Splitting the raw waveform xT

1 into M overlapping win-
dows [x1, . . . , xL] , . . . , [x1+SM , . . . , xL+SM ], with xj repre-
senting the j-th sample of xT

1 , then

ym =
[
x1+S(m−1), . . . , xL+S(m−1)

]
[w1, . . . ,wK ] , (3)

results in a vector ym based on a fixed window of raw wave-
form using K kernels. ym can be viewed as a “frame” similar
to the one used in traditional acoustic feature analysis and can
be obtained by extracting the m-th elements from all K output
feature maps.

Two examples of CNN kernels of the same size L = 5, but
different strides S1 = 1, S2 = 4 and input spans T1 = 7, T2 =
13 are given in Fig. 1. From the figure and based on Eqn. (2), it
is clear that the input span T can be viewed as a function of S,
L, and M , i.e.

T = (M − 1)S + L. (4)

Therefore T is controlled by varying S while fixing L and M .
For example in Fig. 1, both the orange and green kernels have
the same size L = 5 and yield an output feature map sized
M = 3, whereas the orange kernel considers a much larger
input span of T2 = 13 due to its bigger stride 4. In the rest
of the paper, ym will denote the m-th output feature vector.
Throughout the paper, the notation

y = CNNL
S(x

T
1 ,M) (5)

is defined to denote a CNN layer, where y = [y1,y2, . . . ,yM ]
is the concatenation of all M output feature vectors.

Figure 1: Examples for temporal convolution with a output fea-
ture map size M = 3 and kernel length L = 5. The strides
S1 = 1 (green) and S2 = 4 (orange) define the spans T1 = 7
(green) and T2 = 13 (orange) respectively.

3. Multi-Span Acoustic Model
Frames of traditional acoustic features, such as MFCC and
FBANK, are usually derived using the short-time Fourier trans-
form (STFT) based on a 25ms window, within which the speech
signal is assumed to be stationary, and a window shift of 10ms.
Conventional cross-entropy (CE) trained feed-forward DNN
AMs have been found to yield the lowest WERs when 11 con-
catenated frames (or alternatively 9 concatenated frames if first
order differentials are included) are used as the AM input [22–
24], which results in an input span of 125ms of the raw wave-
form signal. Actually, it has been found that more powerful
ANN AMs, such as recurrent or time-delayed neural networks,
can effectively use a much longer span than DNNs [25, 26].
This shows the importance of input span for acoustic modelling.

Figure 2: A sketch map of using three CNN input streams to con-
volve over different raw waveform spans based on the ranges of
[-T1/2, T1/2], [-T2/2, T2/2], [-T3/2, T3/2] respectively.

The multi-span AM is proposed in this paper, which im-
proves FBANK based AMs by using multiple input streams to
extract a more diverse set of complementary features from the
raw waveform. As an example, three input streams of the multi-
span AM are shown in Fig. 2, which produce the outputs o1, o2

and o3 from different spans T1, T2 and T3 respectively by using
two consecutive CNN layers. More specifically, for each input
stream i, CNN input layers are convolved over a unique span of
the raw waveform signal x yielding

yi = CNNLi
Si
(x

Ti/2

-Ti/2
,Mi), (6)

where Si, Li, and Mi are parameters defining the first CNN
layer. Next, yi - which is a flattened array of length MiK (cf.
with Eq. (5)) - is fed into a separate second CNN layer convo-
lutions with stride, kernel size, and output feature map size set
to Si2, Li2, and Mi2, respectively, i.e.

oi = CNNLi2
Si2

(yi,Mi2). (7)

Multiple CNN layers could be stacked in each stream which
can result in the use of smaller kernel sizes [21]. The size of the
resulting output oi from each stream i can be reduced by using
a linear projection Pi, and the final multi-span feature vector p
can be formed by concatenating Pioi from all streams.

In this paper, only input streams with two CNN layers are
investigated. For the CNN input layers given in Eqn. (6), Mi =
200 and K = 64 kernels are fixed throughout the paper, while



for the second CNN layers, Mi2 = 11, Si2 = 1024, and Li2 =
2560 are used in this paper. The ReLU activation function is
applied to the output of both CNN layers in each stream. By
fixing the kernel number of the second CNN layers to be 128,
the size of each output oi is 128×11 = 1408, which is reduced
to 150-d by Pi.

It is to be emphasised that the only parameters that differ
in each stream i are the stride Si and the kernel size Li of the
input CNN layers. If the vectors oi from all streams are of equal
size, then the input span Ti of the raw waveform signal for each
stream is given by Eqn. (4).

It is worth noting that in contrast to other models [7, 8,
14, 27], there is no log-compression, root-compression, max-
pooling or other special non-linearity used in our current setup
in order to constrain the model as little as possible to learn the
best possible feature representations from multiple input spans.
It may be possible to further improve the multi-span model by
e.g. using different non-linearities for different input streams.

4. Experimental Setup
The proposed multi-span AM was evaluated by training systems
on CHiME4 [28] and AMI [29] using HTK 3.5.1 and PyHTK
[30, 31]. In the results reported here, the multi-span feature
vector p of the concatenated input streams is fed into a simple
feed forward DNN with 4 hidden layers each having 512 output
nodes and ReLU activation function. The DNN output layer di-
mension corresponds to the number of clustered triphone-states
and applies the softmax activation function. This structure is
abbreviated as 4L-512d-DNN. We used rather small AMs with-
out many parameters compared to other AMs using the same
data sets [32, 33], to ensure a quick turn around.

The training data is aligned at 10ms frame intervals to the
clustered triphone-states. For both corpora, 10% of the aligned
training data was held back for cross-validation. All mod-
els were trained by the CE criterion, using stochastic gradi-
ent descent optimization with momentum, weight decay and the
NewBob+ learning rate scheduler [18]. To match the number
of alignment frames, the raw waveform input is shifted by 10ms
or 160 samples after every forward pass of the model.

4.1. CHiME4

Initial DNN AMs were trained on 18h of the training corpus
recorded by a close talking microphone (tr05-org + channel 0
on tr05-real) and the alignments obtained were used for all sub-
sequent experiments. The data was aligned at a 10ms frame
interval level to one of 3006 clustered triphone-states. The 18h
training set for DNN AMs consisted of real and simulated data
from channel 5. The raw waveform signal input was globally
normalised for both zero mean and unit variance. Because of
the known microphone failures [28], for every utterance, the
channel used for decoding the 5.6h development (dev) set was
chosen according to a microphone failure detection algorithm
presented in [32]. Speech recognition experiments were con-
ducted using Viterbi decoding based on a 5k vocabulary 3-gram
(tg) LM trained on the official CHiME4 LM training data.

4.2. AMI

The training data for AMI includes 78.2h of speech from indi-
vidual headset microphones (AMI-IHM). The alignments were
generated based on 10ms frames and the decision trees with
3996 clustered triphone-states. Both FBANK and raw wave-
form data was normalised at the utterance level for zero mean

and at the meeting level for unit variance. The systems were
evaluated with the official dev and evaluation (eval) sets, which
contain 9.0h and 8.7h speech, using the official testing dictio-
nary with an 49.4k word vocabulary [29], a 4-gram (fg) LM,
and Viterbi decoding.

5. Experiments
Initially all systems were evaluated on the CHiME4 dataset. At
a later stage, key results were validated on the AMI dataset.

5.1. CHiME4 Channel 5

The 4L-512d-DNN baseline based on the FBANK features is
denoted as F 400

160 with 160 and 400 defining the filter shift and
filter size in number of samples used in the STFT respectively1.
For the single-span AM using raw waveform signal input, the
output o of a single input stream

o = CNN2560
1024(CNNL

S(x
T/2

-T/2)) (8)

is directly fed into a 4L-512d-DNN without dimension reduc-
tion. We denote the single-span AM as ILS with L and S cor-
responding to the kernel size and stride of the CNN input layer.
All weights were randomly initialised without any pretraining.

Table 1: %WERs with a tg LM and AMs with single input stream
on CHiME4 dev set. Stride S and kernel size L are varied, and
L and span length T are counted in waveform samples and ms.

ID S L T dev

F400
160 160 400 125 18.1

I40010 10 400 149 20.2
I10010 10 100 131 19.4
I5010 10 50 128 19.3
I2510 10 25 125 20.7

I504 4 50 53 23.2
I509 9 50 115 19.7
I5015 15 50 190 18.3
I5020 20 50 252 20.7

The single-span AM is an extension of the model proposed
in [16]. In the first experiment, different kernel sizes L and
strides S for ILS were tested giving the WERs in Table 1. The
single-span AM gives lower WERs when using smaller kernel
sizes, with I5010 giving a 4.5 % relative improvement over us-
ing the standard kernel size of 400 [8, 14, 16]. The input span
T makes a noticeable difference to the WERs. Using I5010 as
our reference point, a span of 190ms (I5015 ) relatively improves
the WER by 5.3 %. Furthermore, our best performing single-
span AM I5015 only gives a slightly worse WER than the baseline
F 400
160 , and yields a relative 18.4% improvement over the com-

parable raw waveform system on CHiME4 in [33].
In the next experiment, the proposed multi-span structure

was investigated for different constraints on stride and kernel
size. After concatenation, the output vector p of 450-d was fed
into the 4L-512d-DNN. All systems in this section use layer-by-
layer pre-training by first training one epoch on a sub-network
where p is directly fed into the output layer and then training an-
other epoch extending the sub-network with two 512-d hidden

1In comparison with [28] where the AM is much larger, or [34]
where the AM uses recurrent layers and discriminative sequence train-
ing, the baseline F 400

160 WER in Table 1 is reasonably good.



DNN layers before the output layer. We denote the multi-span
AM as ML1,L2,L3

S1,S2,S3
with Li and Si giving the stride and kernel

size of the CNN input layer in stream i ∈ {1, 2, 3}. Table 2
shows the results.

Table 2: %WERs with a tg LM and AMs with multiple input
streams on CHiME4 dev set. Stride combinations S1, S2, S3

and kernel size combinations L1, L2, L3 are varied.

ID S L T dev

M50,100,400
15,15,15 15 50,100,400 190-212 18.4

M50,100,400
4,9,15 4,9,15 50,100,400 53-212 17.9

M50,50,50
4,9,15 4,9,15 50 53-190 17.1

For the first system M50,100,400
15,15,15 , every input CNN layer

convolves over the raw waveform signal with the same stride
leading to a small range of input spans 190–212ms. Similar
to [12], it was observed that the small kernels mainly act as a
filter for high frequencies and that the larger kernels filter prin-
cipally lower frequencies, which strongly resembles wavelet fil-
ters. However, this did not improve the WER over the single-
span. Additionally using different strides in each CNN input
layer and therefore increasing the range of different spans to
53 − 212ms, the system M50,100,400

4,9,15 yields an improvement
over the single-span AM. Finally, all kernels were set to size 50
and it can be seen that the system M50,50,50

4,9,15 reduces the WER
to 17.1 % absolute. Also, we found that even for a fixed kernel
size of 50, the multi-span AM learns wavelet-like filters by set-
ting the weights at the beginning or the end of a kernel to close
to zero to effectively shorten the kernel size.

5.2. AMI-IHM

The key results were validated using AMI to see how well the
model architectures generalize to different datasets. A baseline
based on 40-d FBANK input features was evaluated for com-
parison2. Table 3 summarizes the results of the key systems
I40010 , I5010 and M50,50,50

4,9,15 on AMI-IHM.

Table 3: %WERs with a fg LM and AMs with single and multiple
input streams compared to baseline AM based on FBANK on
AMI-IHM dev and eval set.

ID System dev eval

F 400
160 FBANK-DNN 28.3 31.1

I40010 Single-Span-DNN 29.1 31.9
I5015 Single-Span-DNN 28.1 30.8
M50,50,50

4,9,15 Multi-Span-DNN 27.2 29.3

Table 3 shows that the single-span AM using raw wave-
form signal input gives lower WERs with a smaller kernel size
and larger input span also on AMI. I5015 gives a similar WER
to the FBANK-DNN AM, while the multi-span AM M50,50,50

4,9,15

outperforms the FBANK-DNN AM by a relative WER reduc-
tion of 4.8%. Comparing M50,50,50

4,9,15 to F 400
160 on both AMI and

CHiME4 data sets, a similar relative WER reduction of 5.5% is
obtained on the CHiME4 dev set.

2Considering F 400
160 is a small DNN with four 512-d hidden layers

and 4k node output layer, and fg LM is used for decoding, its WER is
reasonable compared to those in [35].

6. Discussion
Plotting the input CNN layer kernel weights of the single-span
AMs I40010 and I5015 in the frequency domain reveals the typical
audiological distributed narrow band pass filters as in [6, 7, 16].
When plotting the 64 kernels of size 400 in the time domain,
it can be seen that some filter responses are learned only for a
small part of the kernel, while the other part is set to zero (cf.
Fig. 3 right). While this filter length shortening also happens
when a kernel size of 50 is used, only a much smaller part of
the kernel is set close to zero (cf. Fig. 3 left). This shows that
the model automatically learns wavelet-like filters of different
time-frequency resolution even for a small fixed kernel size.

Figure 3: Left: CNN input layer kernel in time domain of size
50 of trained system I5015 . Right: CNN input layer kernel in time
domain of size 400 of trained system I40010 .

In Fig. 4, the learned filters of the three CNN input layers
of M50,50,50

4,9,15 are smoothed by zero-padding, transformed to the
Fourier domain and sorted by frequency. It can be seen that
the learned filters of the three CNN input layers more or less
cover the whole frequency spectrum with each filter focusing
on a certain area, and that they are rather different compared to
the log Mel curve used for handcrafted acoustic features.

Figure 4: Learned filters of the CNN input layers from our
CHiME multi-span AM M50,50,50

4,9,15 in frequency domain sorted
by frequency, which are rather different to the log Mel-filters.
Left: Stride 4, Middle: Stride 9, Right: Stride 15 .

7. Conclusions
We have presented a novel achitecture for acoustic modelling
using raw waveform input. Our model outperforms a conven-
tional DNN-HMM system based on FBANK features on the
CHiME4 dev set and on the AMI dev and eval sets. By re-
ducing the kernel size from 400 to 50, leaving out any kind
of compression layers in the model and tuning the input span,
we achieved a significant reduction in WER, which questions
the usefulness of imitating feature extraction pipelines when de-
signing AMs based on raw waveform signal input. Analysis of
the best-performing multi-span AM M50,50,50

4,9,15 showed that the
learned filters are different from log-Mel filters in that they do
not seem to follow an audiological distribution (cf. Fig. 4).
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