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Abstract
We investigate the automatic processing of child speech

therapy sessions using ultrasound visual biofeedback, with a
specific focus on complementing acoustic features with ultra-
sound images of the tongue for the tasks of speaker diarization
and time-alignment of target words. For speaker diarization, we
propose an ultrasound-based time-domain signal which we call
estimated tongue activity. For word-alignment, we augment an
acoustic model with low-dimensional representations of ultra-
sound images of the tongue, learned by a convolutional neu-
ral network. We conduct our experiments using the Ultrasuite
repository of ultrasound and speech recordings for child speech
therapy sessions. For both tasks, we observe that systems aug-
mented with ultrasound data outperform corresponding systems
using only the audio signal.
Index Terms: speech recognition, speaker diarization, ultra-
sound tongue imaging, speech therapy, child speech, Ultrasuite

1. Introduction
Developmental speech sound disorders (SSDs) are a common
communication impairment in childhood [1]. Children with
SSDs consistently exhibit difficulties in the production of spe-
cific speech sounds in their native language. Speech disorders
have the potential to negatively affect the lives and the devel-
opment of children. For example, self-awareness of disordered
speech may lead to low-confidence in social situations or intro-
duce communication barriers that lead to increased difficulty in
learning and decreased literacy levels [2, 3, 4].

Clinical intervention is available for these children.
Auditory-based techniques are often efficient for pre-schoolers,
but for older children with persistent disorders such methods
may be unsuccessful [5]. For these cases, there is growing evi-
dence that visual biofeedback (VBF) is helpful [6, 7, 8, 9]. VBF
allows the visualization of the vocal tract during the speech pro-
duction process, enabling patients to correct inaccurate articu-
lations in real-time. Ultrasound VBF is a clinically safe and
non-invasive method that uses standard medical ultrasound to
visualize tongue movements [5, 9, 10, 11]. Besides being useful
for patients, ultrasound tongue imaging (UTI) helps therapists
in the assessment and diagnosis of SSDs, as it provides infor-
mation not available in the acoustic signal (e.g., the presence of
double articulations or undifferentiated lingual gestures).

The automatic processing of speech therapy data can be
helpful to patients and therapists. Children can use screening
tools at an early age to determine whether they need to be as-
sessed by a therapist [12, 13]. Instrumented methods such as
spectrogram or ultrasound analysis can be used to assist the
therapist in the assessment, diagnosis, or quantification of treat-
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ment efficacy. However, current practice relies on manual an-
notation by the therapist or other trained professionals. Exam-
ples include the identification of boundaries for target words or
phones, using the spectrogram or the ultrasound signal. This
is a laborious process that could be alleviated using automated
methods.

There are several challenges associated with the automatic
processing of child speech therapy sessions. They contain di-
alogue between therapist and child, extraneous child speech,
multiple attempts at pronouncing target words, or mispronun-
ciations due to SSDs. Although there is knowledge of target
words, full transcriptions of the recorded speech are not avail-
able. Additionally, there are various other challenges associated
with child speech processing [14], disordered speech processing
[15], and ultrasound image processing [16].

In this work, we are concerned with the speaker diarization
and the time-alignment of target words from child speech ther-
apy sessions using U-VBF. Robust methods to solve these tasks
can alleviate the manual workload of speech therapists, while
having the added benefit of preparing data for further process-
ing, such as the development of screening tools. It is the goal
of this paper to investigate methods that complement the audio
signal with ultrasound images of the tongue. For diarization, we
propose a time-domain signal which we call estimated tongue
activity. For word-alignment, we augment an acoustic model
with low-dimensional representations of ultrasound tongue im-
ages learned by a convolutional neural network. Section 2 intro-
duces our dataset, while Sections 3 and 4 describe our methods
for speaker diarization and word alignment respectively. Sec-
tion 5 provides a discussion and conclusion.

2. The UltraSuite repository
UltraSuite1[17] is a repository of synchronized ultrasound and
audio data from child speech therapy sessions. The repository
currently contains three data collections. One includes record-
ings from 58 typically developing children: Ultrax Typically
Developing (UXTD). Additional collections include data from
children with speech sound disorders recorded over the course
of assessment and therapy sessions: Ultrax Speech Sound Dis-
orders (UXSSD, 8 children) and Ultraphonix (UPX, 20 chil-
dren). Each waveform is accompanied by a prompt and corre-
sponding ultrasound recording. The prompt includes a list of
target words to be elicited by the child and does not correspond
to a direct transcription of the utterance. Recordings may in-
clude therapist intervention to encourage or guide the patient or
extraneous speech by the child (e.g. false starts, multiple at-
tempts at a target word, or unrelated speech). Ultrasound was
recorded using an Ultrasonix SonixRP machine using Articulate
Assistant Advanced (AAA) software at ∼121fps with a 135°

1http://www.ultrax-speech.org/ultrasuite

http://www.ultrax-speech.org/ultrasuite
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Figure 1: Sample waveform (top) with corresponding unity-based normalized estimated tongue activity (bottom). Highlighted segments
denote speech from the child (blue) and the therapist (red).

field of view. A single B-Mode ultrasound frame has 412 echo
returns for each of 63 scan lines, giving a 63x412 “raw” ultra-
sound frame that captures a midsagittal view of the tongue.

3. Speaker diarization
Speaker diarization aims to identify “who spoke when” [18].
For our scenario, the goal is to identify speech segments be-
longing to the child or the therapist. The difficulty of this task is
increased due to very short speech segments with very fast turns
between speakers [19]. In this section, we compare baselines
based on voice activity detection (VAD), diarization methods
using i-vectors [20], and hidden Markov model (HMM) / Gaus-
sian mixture model (GMM) systems bootstrapped by a small set
of labeled data [21]. One of our key contributions is the inclu-
sion of the ultrasound signal via estimated tongue activity. For
evaluation, we use a set of 120 utterances (60 from typically de-
veloping and 60 from speech disordered speakers), which have
been manually annotated. We measure precision and recall in
terms of retrieved child speech and diarization error rate (DER)
in terms of silence, child, and therapist speech. Evaluation met-
rics are computed in terms of time in seconds using a 100ms
collar with pyannote.metrics [22].

3.1. Estimated tongue activity (ETA)

The ultrasound signal visualizes the vocal tract of the child, but
it does not capture information regarding other speakers in the
room. We propose a time domain signal which we call esti-
mated tongue activity (ETA). This is computed given a sliding
time window over the ultrasound frames. The variance of each
echo return is taken over time, and the overall mean variance
of all echo returns is computed. Higher variance indicates that
the content of the ultrasound frames changes rapidly over time.
Figure 1 illustrates the ETA signal, considering a sliding win-
dow of approximately 160 milliseconds. Child speech (high-
lighted in blue) generally occurs with high variance, while ther-
apist speech (in red) occurs with low variance.

3.2. Experiments and results

Baselines. We consider threshold-based baselines using frame-
level energy-based voice activity detection (VAD), available in
Kaldi [23], and the proposed estimated tongue activity (ETA).
In these systems, we use a threshold of 7 to perform VAD and
a threshold of 0.5 to perform tongue activity detection using
ETA. For the method using VAD, we simply term all activity
above the threshold as child speech. For the method combining
both signals (VAD + ETA), all frames below the VAD threshold
are taken as silence and frames that are above the threshold are

Table 1: Results for speaker diarization for typically develop-
ing speech (UXTD) and disordered speech (UXSSD) . Precision,
recall, and F1 score are measured in terms of retrieved child
speech. Diarization Error Rate (DER) measures silence and
speech, while Confusion Error (Conf) measures child and ther-
apist speech error. Highlighted results indicate best systems.

Systems Prec Rec F1 DER Conf

Typically developing speech

VAD 0.89 0.93 0.91 18.7 1.5
VAD+ETA 0.92 0.66 0.77 37.1 19.9
PLDA i-vectors (mfcc) 0.89 0.80 0.85 23.3 6.2

+ f0 0.89 0.70 0.78 26.8 9.8
HMM-GMM (mfcc) 0.86 0.72 0.79 38.0 0.8

+ f0 0.83 0.81 0.87 26.0 0.2
+ f0 + ETA 0.93 0.90 0.92 17.1 0.4
+ f0 + ETA + semi-sup 0.98 0.84 0.90 18.5 0.0

Disordered speech

VAD 0.55 0.90 0.68 47.6 29.7
VAD+ETA 0.81 0.76 0.79 32.0 14.1
PLDA i-vectors (mfcc) 0.67 0.71 0.69 32.4 14.6

+ f0 0.69 0.75 0.72 34.4 16.6
HMM-GMM (mfcc) 0.57 0.71 0.63 52.5 12.5

+ f0 0.82 0.81 0.82 29.1 8.6
+ f0 + ETA 0.81 0.89 0.85 24.0 8.4
+ f0 + ETA + semi-sup 0.95 0.81 0.87 28.2 0.2

further processed using the ETA signal. Those frames above the
ETA threshold are identified as child speech, while those below
are assumed to be therapist speech.
i-vectors. This baseline follows the method presented by Sell
and Garcia-Romero [20], available in Kaldi [23]. We use the
PF-STAR children’s speech corpus [24] (7.4 hours, 86 speak-
ers) to train a Universal Background Model (GMM with 512
components) and extract 64 dimensional i-vectors over 1.5 sec-
ond windows. We use in-domain heldout data from UltraSuite
to normalize the training data for the probabilistic linear dis-
criminant analysis (PLDA) scoring and perform agglomerative
clustering assuming 2 speakers in each recorded session.
HMMs. Our proposed HMM approaches require less data than
typical i-vector clustering approaches. We use the transcrip-
tions available with the UXTD dataset, which contain tags de-
noting whether a word is spoken by the therapist or the child
[17]. Each word is reduced to “child” or “therapist” tokens,
corresponding to speaker turns in each utterance. These are
modelled with 5 state ergodic HMMs with 1000 Gaussian com-
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Figure 2: Convolutional neural network architecture for ultra-
sound embedding extraction.

ponents. We allow HMMs for child, therapist, and optional
silence and noise. Turn-taking sequences are derived from a
transcription and there is no initial alignment with respect to
the features. We evaluate this method using a combination of
20 MFCCs, 3 f0 features [25], and the ETA signal. Because
we bootstrap HMM/GMMs with a small set of annotated data
(1.75 hours), we further investigate a semi-supervised approach
incorporating additional unlabeled disordered speech data, in
which a model trained on typically development data is used to
decode the UPX dataset (11.05 hours), with the hypothesized
labels then used to retrain the HMM/GMM.

For all systems, a post-processing step merges identical la-
bels separated by silence shorter than 100ms and removes labels
with duration less than 50ms.

Results are presented in Table 1. The simple baseline ap-
proaches perform well for the typically developing dataset,
which has minimal adult intervention, and therefore less need
for diarization [17]. The loss in recall with ETA thresholding is
caused by losing segments with reduced tongue activity (e.g.
words such as “apa”). In the case of the disordered speech
dataset, therapist intervention is more frequent, and ETA is a
useful addition to VAD.

The i-vector system does not perform as well as expected.
This might be due to size of the database used to train the UBM,
but also to the challenges of fast speaker turns. Similar results
were found using a large adult database (NIST SRE datasets,
similar to [20]). We hypothesize that the i-vectors are not robust
enough, as we enforce a very small window due to the rapid
turns between speakers. High error rates have previously been
found for a similar scenario [19]. Allowing a longer window
would lead to equally poor i-vectors, as they would be computed
over a mixture of adult and child speech. Surprisingly, including
f0 was not helpful using this method.

The proposed HMM-GMM systems achieved better results,
especially when using additional features. The use of f0 leads
to good improvements, which are complemented by the inclu-
sion of the ETA signal. Overall, a basic HMM-GMM using
a combination of all features achieves good performance on
both datasets. The semi-supervised approach leads to very low
speaker confusion, but DER is increased due to missed cases.
Although the model becomes stronger at differentiating speak-
ers, it does so at the expense of the silence and noise models.
This can also be seen from the lower recall scores.

4. Word alignment
Word alignment involves time-aligning target words, given in
the prompt, with the speech signal. There are various challenges
associated with this task when applied to speech therapy ses-
sions. This is noticeable when force-aligning the audio with the
expected prompt, using baseline standard methods. In this sec-
tion, we complement the audio signal with ultrasound images
of the tongue for acoustic modeling.

Table 2: Results for word alignment (precision, recall, F1)
and recognition (WER) for typically developing speech (UXTD)
and disordered speech (UXSSD). Baseline systems use GMMs
trained on Ultrasuite and PF-Star data. USuite systems use
neural network acoustic models. Highlighted results indicate
best performing systems.

Systems Pre Rec F1 WER

Typically developing speech

Baseline (no diarization) 0.88 0.90 0.89 36.29
Baseline 0.89 0.91 0.90 37.18
USuite 0.86 0.92 0.89 31.35
USuite+PFstar 0.85 0.92 0.89 30.96
USuite+UTI 0.86 0.92 0.90 31.22
System combination (α = 0.6) 0.86 0.93 0.89 28.68
System combination (α = 0.7) 0.86 0.93 0.89 29.44

Disordered speech

Baseline (no diarization) 0.53 0.46 0.50 71.19
Baseline 0.77 0.68 0.72 69.24
USuite 0.75 0.70 0.73 63.21
USuite+PFstar 0.76 0.72 0.74 59.35
USuite+UTI 0.75 0.90 0.72 62.73
System combination (α = 0.6) 0.77 0.73 0.75 59.35
System combination (α = 0.7) 0.77 0.72 0.75 58.14

4.1. Ultrasound embeddings

We augment the audio features with ultrasound embeddings ex-
tracted from a convolutional neural network (CNN). The net-
work uses the UXTD dataset as training data and follows the
architecture and findings reported by [26], illustrated in Figure
2. Input consists of 8 ultrasound frames, grouped as multiple
channels. These are: the current frame, 3 left and right neigh-
boring frames, and the speaker mean. Two sets of convolution
and max-pooling layers are followed by three fully-connected
layers. The final layer of the network is 8 dimensional, and we
let this representation be the ultrasound embedding for the cur-
rent timestamp. Output classes roughly correspond to place of
articulation, defined over the entire phoneset.

4.2. Acoustic model training and evaluation

We train the acoustic models with the Kaldi speech recogni-
tion toolkit [23]. GMMs are initialized on pooled data from
UXTD (1.75 hours), UPX (11.05 hours), and the training set
of the PF-STAR children’s speech corpus (7.4 hours) [24]. The
inclusion of the PF-STAR corpus is beneficial for model initial-
ization as it contains additional manually transcribed data for
86 speakers.2 For UXTD and UPX data, we remove speech
frames associated with the therapist using the system with the
best DER from Section 3. This way, we avoid aligning target
words with time segments belonging to the speech therapist.
After monophone and triphone training, Mel Frequency Cep-
stral Coefficients (MFCCs) are processed with Linear Discrimi-
nant Analysis (LDA) and a Maximum Likelihood Linear Trans-
form (MLLT). This is followed by Speaker Adaptive Train-
ing (SAT) with feature-space MLLR (fMLLR) [27, 28]. This
HMM-GMM system is denoted Baseline in Table 2. Alignment

2We have attempted to initialize models using only in-domain data,
but including the PF-STAR corpus lead to a stronger initialization at this
stage. We therefore opt to treat that as our baseline and we conduct our
analyses over the neural network acoustic models.
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Figure 3: Combination of models augmented with out-of-
domain acoustic data (USuite+PFstar) with weight α and aug-
mented with ultrasound embeddings (USuite+UTI) with weight
(1 − α). Results are averaged across typically developing and
speech disordered evaluation sets.

and fMLLR features from this system are then used to train
feedforward neural networks, following Kaldi’s nnet1 recipe.

For evaluation, we use a set of 398 utterances (199 from
typically developing speakers, and 199 from speakers with
speech disorders), manually annotated with word boundaries
from target words given by the prompt. Precision and recall
are measured in terms of correctly retrieved time with respect
to the manual gold standard, given matching word labels [22].
Additionally, in order to further quantify the robustness of the
acoustic models, we consider an experimental scenario where
we decode within oracle word boundaries. For this case, we use
a uniform unigram language model, built from the joint vocab-
ulary of the UXTD/UXSSD datasets (1161 words). Results are
reported in terms of word error rate (WER).

4.3. Experiments and results

We compare various neural network acoustic models. The first
uses only acoustic in-domain data from speech therapy sessions
(UXTD and UPX training data), termed USuite. This training
set is also augmented with out-of-domain acoustic data from
the PF-STAR children’s speech corpus (USuite+PFstar). We
augment the in-domain system with the ultrasound embeddings
described in Section 4.1 using a context of 4 frames. Acoustic
and ultrasound features are concatenated for the neural network
(USuite+UTI). Ideally we would include all data sources, but
ultrasound does not exist in the PF-STAR corpus. Therefore,
we combine the two systems by interpolating their posterior
probabilities, with weight α for USuite+PFstar and (1− α) for
USuite+UTI (System combination).

Results are presented in Table 2. Diarization is not ben-
eficial for the typically developing dataset, as it has a small
amount of adult speech. This is not the case for disordered
speech, where diarization leads to more accurate alignment
and recognition. Although baseline GMMs perform reason-
ably well in terms of alignment, they do not outperform neural
network acoustic models in terms of recognition. Augmenting
in-domain data with ultrasound embeddings leads to improve-
ments on both datasets, but not as much as using additional
out-of-domain acoustic data. The best system is a combination
of the systems augmented with out-of-domain data and ultra-

Table 3: Results for combination of models with α = 0.7 for
disordered speech (UXSSD), grouped by assessment session at
various stages of therapy. Post-therapy is recorded immediately
after therapy and Maintenance several months after.

Sessions Pre Rec F1 WER

Baseline 0.77 0.72 0.75 62.01
Mid-therapy 0.82 0.76 0.80 60.90
Post-therapy 0.80 0.74 0.77 47.89
Maintenance 0.71 0.69 0.70 60.35

Global 0.77 0.72 0.75 58.14

sound embeddings. Although we observe small improvements
in terms of alignment metrics, WER shows that combined mod-
els are more robust than either of them separately. Figure 3
shows results for model combination across the range of α val-
ues. Best results occur when there is a slight bias towards the
system augmented with out-of-domain training data. These re-
sults also show that ultrasound and audio data can complement
each other well.

5. Discussion and conclusions
Speech therapy using U-VBF is beneficial for patients, who
may visualize their articulators during speech production, and
therapists, who may use ultrasound for more accurate diag-
noses and treatments. The automatic processing of speech ther-
apy sessions provides additional benefits by alleviating some of
the time-consuming manual tasks undertaken by therapists, as
well as preparing data for further processing. In this paper we
proposed methods that use ultrasound tongue imaging to com-
plement the audio signal for speaker diarization and the time-
alignment of target words. For both tasks, we have observed im-
provements in models augmented with ultrasound when com-
pared with models using only audio recordings.

For speaker diarization, we have proposed a measure of Es-
timated Tongue Activity (ETA) which we have used for tongue
activity detection. In the future, this signal could be useful to
measure patients’ overall tongue activity during therapy ses-
sions. For example, to investigate whether children shadow
therapists or whether they exhibit a larger amount of tongue
movement after therapy. One of the main issues for diarization,
however, is the lack of annotated training data. These methods
are designed to be used by therapists during and after assess-
ment sessions, and they could learn from user input. For exam-
ple, a single session typically contains the same two speakers.
Adaptation based on a small amount of data annotated by the
therapist could help with speaker diarization.

In terms of alignment, we showed that a combination of
models augmented with out-of-domain acoustic data and in-
domain ultrasound data led to more robust acoustic models. Ta-
ble 3 shows results by assessment session at various stages of
therapy. These results should not be directly compared, as they
contain different target words, but they do illustrate the tem-
poral dependency of therapy sessions, which could be used for
longitudinal online learning [29]. Additionally, there are vari-
ous issues that were not addressed by this paper. Future work
may consider learning speaker- or session-specific pronuncia-
tions [30], as baseline sessions are expected to have different
pronunciations than post-therapy or maintenance sessions. Fur-
thermore, insertions and deletions with respect to the prompt
could be handled by relaxing the constraints of the linear trans-
ducer used for alignment [31].
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