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Abstract

This paper introduces a modification of phase transform on sin-

gular value decomposition (SVD-PHAT) to localize multiple

sound sources. This work aims to improve localization accuracy

and keeps the algorithm complexity low for real-time applica-

tions. This method relies on multiple scans of the search space,

with projection of each low-dimensional observation onto or-

thogonal subspaces. We show that this method localizes mul-

tiple sound sources more accurately than discrete SRP-PHAT,

with a reduction in the Root Mean Square Error up to 0.0395

radians.

Index Terms: multiple sound source socalization, srp-phat,

svd-phat, direction of arrival

1. Introduction

The cocktail party effect consists of the ability to focus on a

specific conversation in a noisy environment. While humans

can usually perform this task efficiently, distant speech pro-

cessing remains challenging for automatic speech recognition

(ASR) systems [1]. To improve ASR performances, it is com-

mon to use a beamformer with multiple microphones as a pre-

processing step to enhance the corrupted speech signal [2, 3, 4].

Some beamforming methods, such as the delay and sum and the

minimum variance distortionless response (MVDR) [5], require

the target source direction of arrival (DOA). On the other hand,

methods like geometric sound separation require both the target

and interference sources direction of arrival [6, 7]. It is therefore

desirable to estimate the direction of arrival of multiple sound

sources.

High resolution methods such as Multiple Signal Classi-

fication (MUSIC) [8] and the Estimation of Signal Parameters

via Rotational Invariance Technique (ESPRIT) [9] were initially

designed for narrowband signals, and subsequently adapted to

broadband signals such as speech [10, 11, 12, 13, 14, 15].

However, MUSIC-based methods involve online computations

of eigenvectors, which makes real-time implementation chal-

lenging on low-cost embedded hardware. On the other hand,

ESPRIT-based techniques require significantly less computa-

tions, but need twice as many sensors as MUSIC to perform

with similar performance, which is problematic for microphone

arrays with few sensors.

Alternatively, the Steered-Response Power Phase Trans-

form (SRP-PHAT) robustly estimates the direction of arrival

of speech sources and can be computed with low-cost embed-

ded hardware [16]. SRP-PHAT relies on the Generalized Cross-

Correlation with Phase Transform (GCC-PHAT) between each

pair of microphones. The Fast Fourier Transform is often used
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to speed up the computation of GCC-PHAT, but this also re-

duces localization accuracy. This discrete SRP-PHAT approach

can localize many sound sources by scanning the search space

multiple times, and nulling the GCC-PHAT region related to

each found DOA [17, 18, 19, 20]. Hierarchical search also re-

duces the number of lookups in memory [21, 22]. The discrete

SRP-PHAT approach however relies on rounded TDOA values,

which may reduce the localization accuracy.

Alternatively, Cai et al. propose using multiple subbands

to individually localize one sound source per band [23]. Sim-

ilarly, it is possible to localize multiple speech sources based

on their distinct pitch values [24]. Pavlidi et al. introduce a

technique to identify single-source zones in the time-frequency

range and generate a histogram to count and localize multiple

sound sources [25]. However, these methods rely on narrow

bands to localize sound sources, which makes localization more

sensitive to reverberation. On the other hand, localization can

also exploit interesting properties of microphone arrays with

symmetrical geometries. For instance, wavefield decomposi-

tion enables localizing multiple sound source with spherical

arrays [26, 27, 28, 29, 30]. Similarly, low-complexity multi-

ple sources localization is possible in 2-D with circular arrays

[31, 32]. These methods offer interesting performance, but rely

on a specific microphone array geometry, which restricts their

scalability.

We recently proposed a new method called SVD-PHAT that

relies on singular value decomposition to map the observations

to a small subspace, and then uses a nearest neighbor search

algorithm like a k-d tree to find the DOA [33]. This single

source localization method is appealing as it preserves exact

SRP-PHAT accuracy while greatly reducing the computational

complexity, and can adapt to microphone array with arbitrary

shapes. In this paper, we extend SVD-PHAT to localize multi-

ple sound sources.

2. SRP-PHAT

We first introduce SRP-PHAT with rounded TDOA that allows

efficient localization of multiple sound sources with arbitrary

array shapes. Let Xl
m[k] ∈ C be the Short Time Fourier

Transform (STFT) coefficients, where N ∈ N and ∆N ∈ N

stand for the frame and hop sizes in samples, respectively, and

k ∈ {0, 1, . . . , N/2}, m ∈ M = {1, 2, . . . ,M} and l ∈ N

stand for the frequency bin, microphone and frame indexes, re-

spectively. The cross-correlation Xl
i,j [k] for each microphone

pair (i, j) ∈ P = {(x, y) ∈ M2 : x < y} is obtained with the

following recursive estimation with α ∈ [0, 1]:

Xl
i,j [k] = (1− α)Xl−1

i,j [k] + αXl
i [k](X

l
j [k])

∗
(1)

where {. . . }∗ stands for the complex conjugate. For clarity, the

frame index l is omitted in this paper without loss of generality.
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The phase transformed spectrum X̂i,j [k] ∈ C for each micro-

phone pair is then obtained in (2), where | . . . | stands for the

absolute value.

X̂i,j [k] = Xi,j [k]/|Xi,j [k]| (2)

The generalized cross correlation with phase transform

(GCC-PHAT) for each pair of microphone and TDOA τ ∈ R is

given in (3), where W [k, τ ] = exp (2π
√−1kτ/N).

xi,j [τ ] =

N/2
∑

k=0

X̂i,j [k]W [k, τ ] (3)

The TDOA τi,j,q ∈ R (in samples) corresponds to the dif-

ference between the direction of arrival (DOA) from a source

sq ∈ {x ∈ R
3 : ‖x‖2 = 1} to microphone i at position

ri ∈ R
3, and the DOA between the same source and another

microphone j at position rj ∈ R
3, scaled with the speed of

sound in air c ∈ R
+ (in m/sec) and the sample rate (fS ∈ N):

τi,j,q =
fS
c
(rj − ri) · sq (4)

where {·} stands for the dot product.

It is common to discretize τi,j,q by rounding to the closest

integer (denoted as ⌊τi,j,q⌉ ∈ Z), and compute the GCC-PHAT

in (3) using an Inverse Fourier Transform (IFFT) for all τ =
n ∈ N = {0, 1, . . . , N − 1}. The expression Yq ∈ R is then

obtained as follows for every possible DOA dq , where q ∈ Q =
{1, 2, . . . , Q}::

Yq =
∑

(i,j)∈P

xi,j [⌊τi,j,q⌉ (mod N)] (5)

The index of the most likely DOA then corresponds to:

q∗ = argmax
q∈Q

{Yq} (6)

Once the DOA at index q∗ is found, we can remove its

contribution from the current observations and perform a new

scan to detect other active sound sources. A naive approach

consists in nulling the expression Yq∗ and some of its closest

neighbors, and then scan for a new maximum value. How-

ever, this approach ignores the possible side lobes generated

by the found source, and these may lead to false positives in

the next scan iteration. To address this issue, a popular so-

lution consists in nulling some regions in the GCC-PHAT re-

sults instead, recompute Yq ∀ q ∈ Q with (5), and then find

a new maximum as in (6). For each DOA index q, we de-

fine a subset of DOA indexes Qq = {x ∈ {1, 2, . . . , Q} :
arccos (sx · sq) ≤ ∆θ} that gathers DOAs close in space to

the DOA sq , where ∆θ is a user-defined parameter that stands

for the maximum angle difference. We then define the set

Ti,j,q = {τmin
i,j,q , τ

min
i,j,q +1, . . . , τmax

i,j,q − 1, τmax
i,j,q } that contains

all TDOAs related to the DOA sq and its closest neighbors, for

the microphone pair (i, j), where:

τmin
i,j,q =

⌊

min
p∈Qq

{τi,j,p}
⌋

and τmax
i,j,q =

⌈

max
p∈Qq

{τi,j,p}
⌉

(7)

and the GCC-PHAT values in range of Ti,j,q∗ are then set to

zero for all pairs.

Algorithm 1 summarizes how SRP-PHAT can be adapted

to localize R multiple sources. At each scan r ∈ R =
{1, 2, . . . , R}, the GCC-PHAT values are updated, and the fol-

lowing scans are thus performed without the contribution of the

Algorithm 1 SRP-PHAT for multiple sources

Offline:

1: Generate τi,j,q , Ti,j,q ∀ (i, j) ∈ P ,∀ q ∈ Q.

Online:

1: Compute xi,j [n] ∀ (i, j) ∈ P ,∀ n ∈ N .

2: for r ∈ R do

3: Compute Yq ∀ q ∈ Q.

4: Find q∗ using linear search.

5: for (i, j) ∈ P do

6: xi,j [τ ]← 0, ∀ τ ∈ Ti,j,q∗
7: end for

8: dr ← sq∗ , er ← Yq∗

9: end for

source recently found. The expressions dr and er stand for the

DOA and energy level found at scan r.

Although appealing as it relies on an efficient implementa-

tion of GCC-PHAT with IFFTs, this approach relies on discrete

cross-correlation results, which reduces the accuracy. We there-

fore propose to adapt SVD-PHAT to estimate the direction of

arrival (DOA) of multiple sound sources with more accuracy.

3. SVD-PHAT

To define the SVD-PHAT method, it is convenient to start from

SRP-PHAT in matrix form. Let us define the vector Xi,j ∈
C

(N/2+1)×1 for the microphone pair (i, j) ∈ P that holds the

phase normalized cross-correlation coefficients for all bins k ∈
{0, 1, . . . , N/2}:

Xi,j =
[

X̂i,j [0] X̂i,j [1] · · · X̂i,j [N/2]
]T

(8)

where {. . . }T stands for the transpose operator.

A single vector X ∈ C
P (N/2+1)×1 then holds all these

vectors:

X =
[

(X1,2)
T (X1,3)

T · · · (XM−1,M )T
]T

(9)

For each pair of microphones (i, j), all coefficients

W [k, τ ] ∈ C are concatenated in a matrix Wi,j ∈
C

Q×(N/2+1):

Wi,j =











W [0, τ1,i,j ] · · · W [N/2, τ1,i,j ]
W [0, τ2,i,j ] · · · W [N/2, τ2,i,j ]

...
. . .

...

W [0, τQ,i,j ] · · · W [N/2, τQ,i,j ]











(10)

The supermatrix W ∈ C
Q×P (N/2+1) then holds all the

matrices Wi,j ∀ (i, j) ∈ P :

W =
[

W1,2 W1,3 · · · WM−1,M

]

(11)

Finally, the vector Y ∈ R
Q×1 holds the results Yq ∀ q ∈

{1, 2, . . . , Q}, where ℜ{. . . } returns the real part:

Y =
[

Y1 . . . YQ

]T
= ℜ{WX} (12)

The supermatrix W can be estimated with SVD of rank

K ∈ {1, 2, . . . ,Kmax}, with Kmax = max{Q,P (N/2+1)}
and where U ∈ C

Q×K , S ∈ C
K×K and V ∈ C

P (N/2+1)×K :

W ≈ USV
H

(13)



The rank K corresponds to the minimum value for which

the following condition holds, where δ ∈ (0, 1) is a user-

defined parameter that stands for the reconstruction tolerable

error:

Tr {SST } ≥ (1− δ) Tr {WW
H} (14)

where Tr{. . . } stands for the trace of the matrix.

The vector Z ∈ C
K×1 then results from the projection of

the observations X in the K-dimensions subpace:

Z = V
H
X (15)

Similarly, we define the dictionary D ∈ C
Q×K , made of

the vectors Dq ∈ C
1×K ∀ q ∈ {1, 2, . . . , Q}:

D = US =
[

(D1)
T (D2)

T . . . (DQ)
T

]T
(16)

As explained in [33], the DOA index then corresponds to

q∗, obtained as follows:

q∗ = argmax
q∈Q

{ℜ{Dq · ZH}} (17)

which can be converted into the following nearest neighbor

problem with an algorithm such as k-d tree:

q∗ = argmin
q∈Q

{‖D̂q − Ẑ
H‖22} (18)

where D̂q = Dq/‖Dq‖2 and Ẑ = Z/‖Z‖2.

Intuitively, we would like to remove the component in Z

that spans the space spanned by (Dq∗)
∗, and then perform a

new scan to find another source. We thus define the vector vr ∈
C

1×K as follows:

vr = (Dq∗)
∗

(19)

The Gram-Schmidt process then makes the current vector

vr at scan r orthogonal to all the vectors previously found

(ûn ∀ n ∈ {1, 2, . . . , r − 1}), and generates ur:

ur = vr −
r−1
∑

n=1

(ûn · vr)ûn (20)

which is then normalize to have a unit norm:

ûr = ur/‖ur‖2 (21)

Finally, the current observation Z is projected in the sub-

space orthogonal to ûr to remove the current contribution of

the source previously found:

Z
′ = Z− (ûr · Z)ûr (22)

Algorithm 2 summarizes these steps for SVD-PHAT. This

approach is appealing as it involves R k-d tree search instead

of computing R times Yq ∀ q ∈ Q as in (5), which reduces the

algorithm complexity.

4. RESULTS

We investigate three different microphone array geometries: a

1-D linear array, a 2-D planar array and a 3-D array. The micro-

phones xyz-positions with respect to the center of the array are

given in cm in Table 1.

Simulations are conducted to measure the accuracy of the

proposed method and compare it to the SRP-PHAT approach

discretized with IFFTs. The microphone array is positioned and

rotated randomly in a 10m× 10m× 3m rectangular room, with

Algorithm 2 SVD-PHAT for multiple sources

Offline:

1: Generate D, V, and V̄q ∀ q ∈ {1, 2, . . . , Q}.
Online:

1: Compute Z from V and observations X.

2: for r ∈ {1, 2, . . . , R} do

3: Find q∗ using a k-d tree to minimize ‖D̂q − Ẑ
H‖22.

4: Compute Yq∗ , vr , ûr and Z
′.

5: Z← Z
′, dr ← sq∗ , er ← Yq∗

6: end for

Table 1: Positions (x,y,z) of the microphones in cm

Mic 1-D 2-D 3-D

1 (−5.0, 0, 0) (0, 0, 0) (0, 0, 0)

2 (−3.3, 0, 0) (5, 0, 0) (−5, 0, 0)
3 (−1.7, 0, 0) (2.5, 4.3, 0) (5, 0, 0)

4 (0, 0, 0) (−2.5, 4.3, 0) (0,−5, 0)
5 (1.7, 0, 0) (−5.0, 0, 0) (0, 5, 0)

6 (3.3, 0, 0) (−2.5,−4.3, 0) (0, 0,−5)
7 (5.0, 0, 0) (2.5,−4.3, 0) (0, 0, 5)

a minimum distance of 0.5m from the walls, ceiling and floor.

The target sources are also positioned randomly in the room,

and the random setup ensures a minimum angle difference of

30◦ between each source, a distance of at least 0.5m between

each source and the center of the microphone array, and a dis-

tance of at least 0.5m between each source and the walls, ceil-

ing and floor. For each configuration, the room reverberation is

modeled with Room Impulse Responses (RIRs) generated with

the image method [34], where the reverberation time (RT60) is

sampled randomly in the uniform interval between 200 and 500
msecs, which corresponds to the levels previously used in [33].

Sound segments selected randomly from the TIMIT dataset [35]

are normalized to have the same energy levels, and are con-

volved with the generated RIRs. For each type of array (1-D,

2-D and 3-D) and number of active sources (1, 2 and 3), we

perform 1000 simulations.

Table 2 introduces the parameters used with SRP-PHAT

and SVD-PHAT. The sample rate fS captures all the frequency

content of speech (including wideband fricatives that contain

relevant localization information), and the speed of sound c
matches typical indoor conditions at room temperature. The

frame size N analyze speech segments of 32 msecs, and the hop

size provides a 50% overlap. The DOAs are scanned on a unit

sphere generated recursively from a tetrahedron, for a total of

2562 points, as in [21]. Moreover, the cross-correlation adapta-

tion rate α estimates the sound statistic over the past 400 msecs.

In the case of SRP-PHAT, the maximum angle difference ∆θ
corresponds to 0.1745 radians to null the current source within

a region of 10◦. In the specific case of SVD-PHAT, the user-

defined parameter is set to δ = 10−5 as in [33].

Table 2: Parameters for SRP-PHAT and SVD-PHAT

fS c N ∆N Q α

16000 340.0 512 128 2562 0.1

For a 1-D array with all microphones on the x-axis, the spa-



tial resolution is limited to an arc that goes from 0◦ to 180◦ in

the xy-plane. The 3-D DOA is therefore projected to this sub-

space as follows:

f1(x) = [cos(g(x)), sin(g(x)),0] (23)

where:

g(x) = atan2

{

(x)x,
√

(x)2y + (x)2z

}

(24)

Similarly, a 2-D array that spans the xy-plane allows DOA

estimation on a half hemisphere oriented in the z-axis, and

therefore all DOAs are projected to the positive z-axis:

f2(x) = [(x)x, (x)y, |(x)z|] (25)

Finally, for a 3-D array, the DOA can span the full space:

f3(x) = x (26)

For each speech source t ∀ {1, 2, . . . , T}, the minimum an-

gle difference (in radians) between the theoretical DOA and all

estimated DOAs at frame l ∈ {1, 2, . . . , L} is given as follows:

φl
t = min

r∈R

{

arccos (fβ(d
l
r) · fβ(ct))

}

(27)

where β ∈ {1, 2, 3} matches the array geometry. The goal is

therefore to have at least one DOA estimation that matches each

speech source true DOA.

In the proposed experiments, the number of sources varies

with T = {1, 2, 3}, and the number of scans R matches this

number. The root mean square error (RMSE) in rad for a simu-

lation therefore corresponds to:

RMSE =

√

√

√

√

1

LT

L
∑

l=1

T
∑

t=1

(φl
t)

2 (28)

Figure 1 shows the estimated DOAs obtained with SRP-

PHAT and SVD-PHAT for a 1-D array with three speech

sources located at −1.2192 rad, −0.4335 rad and 0.4015 rad,

and a reverberation time (RT60) of 238 msecs. In this example,

the SRP-PHAT method fails to detect the source at −0.4335
rad at different times, whereas SVD-PHAT detects this source

most of the time. The RMSEs of SRP-PHAT and SVD-PHAT

correspond to 0.3009 rad and 0.2027 rad, respectively, which

indicates that SVD-PHAT outperforms SRP-PHAT in this spe-

cific example.

The RMSE gap between both SRP-PHAT and SVD-PHAT

is however usually smaller than the one shown in Figure 1. To

better compare both methods, Table 3 shows the mean of all

RMSEs for the 1000 simulations with each configuration. In

all cases, the proposed multiple source SVD-PHAT reduces the

RMSE compared to the discrete SRP-PHAT, but with a smaller

gap that oscillates between 0.0244 rad and 0.0395 rad. It is in-

teresting to note that for multiple sound sources (T > 1), the

RMSE increases rapidly. This is expected as multiple active

sources partially overlap each other in the time-frequency do-

main, which makes localization more challenging. The best im-

provement for multiple sources occurs for the 3-D array when

two sources are active, with a reduction in the RMSE of 0.0395
rad.
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(b) SVD-PHAT (RMSE = 0.2027)

Figure 1: Azimuth angle (in rad, obtained with g(x) in (24))

of potential sources found with SRP-PHAT and SVD-PHAT, for

r = 1 (blue circles), r = 2 (red squares) and r = 3 (green

triangles). The theoretical DOAs are −1.2192, −0.4335 and

0.4015, and are plotted with solid black lines. For this simula-

tion, the reverberation time (RT60) corresponds to 238 msecs.

Table 3: Root Mean Square Error (RMSE) – less is better

Geometry Nb. Sources SRP-PHAT SVD-PHAT

1-D

1 0.0884 0.0509

2 0.2656 0.2274

3 0.2763 0.2519

2-D

1 0.1356 0.0820

2 0.4516 0.4200

3 0.4201 0.3828

3-D

1 0.0708 0.0296

2 0.4550 0.4155

3 0.5445 0.5189

5. CONCLUSION

This paper extends SVD-PHAT for multiple sound source lo-

calization. This technique outperforms the discrete SRP-PHAT

approach in terms of accuracy, while preserving the low com-

plexity of the original SVD-PHAT. On average, the reduction in

the RMSE varies between 0.0244 and 0.0395 radians, and the

best improvement is observed for an array that spans 3-D space

with two simultaneous speech sources.

In future work, we will investigate alternatives to k-d tree

search to address the curse of dimensionality during the near-

est neighbor search [36]. The method could also be extended

to deal with speed of sound mismatch and the near-field ef-

fect. Microphone directivity could also be combined with

SVD-PHAT to make the propagation model more realistic [37].

The sound source tracking method proposed in [21] could also

be combined to SVD-PHAT to estimate the number of sound

sources and track their positions over time. Finally, it would be

interesting to implement SVD-PHAT in C code for easy deploy-

ment on real-time embedded systems.
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