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Abstract

Emotion recognition in speech is a meaningful task in affective
computing and human-computer interaction. As human emo-
tion is a frequently changing state, it is usually represented as
a densely sampled time series of emotional dimensions, typi-
cally arousal and valence. For this, recurrent neural network
(RNN) architectures are employed by default when it comes to
modelling the contours with deep learning approaches. How-
ever, the amount of temporal context required is questionable,
and it has not yet been clarified whether the consideration of
long-term dependencies is actually beneficial. In this contribu-
tion, we demonstrate that RNNs are not necessary to accom-
plish the task of time-continuous emotion recognition. Indeed,
results gained indicate that deep neural networks incorporating
less complex convolutional layers can provide more accurate
models. We highlight the pros and cons of recurrent and non-
recurrent approaches and evaluate our methods on the public
SEWA database, which was used as a benchmark in the 2017
and 2018 editions of the Audio-Visual Emotion Challenge.
Index Terms: affective computing, speech emotion recogni-
tion, human-computer interaction, computational paralinguis-
tics, convolutional neural networks

1. Introduction

Emotion recognition in speech (ERS), is a well-studied field in
the domain of affective computing [1]. Using the speech sig-
nal as a modality has some advantages compared to the visual
modality, e. g., that there are no occlusions [2, 3]. Nevertheless,
the best performances are usually obtained when following a
multi-modal approach fusing the acoustic, linguistic, and visual
domains [4]. Whereas early research in ERS pursued the recog-
nition of human emotions in terms of categories (e. g., happy,
bored, etc.) [5], dimensional models have now been established,
based on the circumplex model introduced by Russell [6]. In
these models, emotions are generally expressed in terms of two
continuous variables, namely arousal and valence [7]. While
the first describes the level of the physical or mental response
of a person, the latter describes whether the emotion is a positive
or a negative one. Moreover, ERS is nowadays not commonly
performed on discrete chunks of audio, but rather in a ‘time-
continuous’ manner, assigning a level of arousal and valence to
each time-stamp of an audio (or audio-visual) data stream [8].
This approach takes into account the rapidly changing nature of
emotion as a human state.

From the methodological point of view, time-continuous
ERS is usually accomplished by first extracting meaning-
ful acoustic features and then employing a recurrent neural
network (RNN) architecture, mostly long short-term memory
(LSTM)-RNNs, to model arousal and valence over time [8,
9, 10]. Instead of building on hand-crafted acoustic feature
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sets [11], which are motivated by both domain-knowledge and
experimental evaluation, also end-to-end learning has become
common practice, using a neural network of, for example, two
convolutional layers (followed by maximum-pooling layers) to
handle the feature extraction on the raw time-domain signal,
followed by LSTM layers [12]. Convolutional layers can be in-
terpreted as finite impulse response filters, where all weights are
trained on the data.

Architectures employing LSTM units have the property of
modelling the dynamics of long-term time series [13], however,
it is questionable if such dependencies are actually required for
emotion modelling. Huang et al. found that even with an LSTM
model, it is difficult to benefit from long-term patterns in audio-
visual emotion recognition, and they trained their model on sub-
sequences from the recordings [14]. Furthermore, as emotion is
a human state varying quickly over time, it should be possi-
ble to recognise it also from a short context window, at least
with an acceptable error. This effect has already been demon-
strated, using a support vector machine (SVM) model based
on bag-of-audio-words features summarising audio descriptors
from a certain block (6 to 8 seconds) as a histogram represen-
tation [15, 16]. Nevertheless, recurrent architectures trained on
long sequences have the inherent advantage of compensating
temporal delays between the recording and the gold standard
of arousal and valence. This delay originates from the obser-
vation that for the labels found in most corpora, human annota-
tors are engaged to rate the emotion in the recordings based on
their perceptual observations while listening and/or watching.
The human decision-making process inherently takes a certain
amount of time, typically 2 to 4 seconds [15, 17, 18]. The re-
sulting delay of the annotated contours must be compensated
for when a non-recurrent approach or a static regressor, such as
SVM, is employed.

In this contribution, we demonstrate that a recurrent archi-
tecture is actually not beneficial for time-continuous ERS and
that a deep neural network architecture consisting of only con-
volutional layers provides superior results. This architecture has
the advantage of having less trainable parameters and, there-
fore, a faster training process. Both the emotion predictions in
an intra-cultural and in a cross-cultural setting are improved,
compared to the recurrent model. Moreover, we can show that
the training process is quite robust against delays between the
audio signal and the gold standard. To the knowledge of the au-
thors, this is the first work on time-continuous ERS using a deep
learning architecture with a fully convolutional neural network
(CNN). In previous works, such as by Zheng et al., categorical
emotion in audio chunks is classified with a CNN, based on a
whitened spectrogram representation [19].

In the following section, the corpus used throughout the
experiments and related work on it are introduced. In Sec-
tion 3, the features and models we compare are motivated and
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Table 1: Key statistics of the AVEC 2018 CES data [21]

Culture Partition #Subjects Length [min:s]
German Training 34 93:12
German Development 14 37:46
German Test 16 46:38
Hungarian  Test 66 133:12
SUM 130 310:48

described. Next, in Section 4, experiments and results are pre-
sented and discussed in Section 5. Finally, we conclude and
give an outlook on future research in Section 6.

2. Corpus

The SEWA corpus includes audio-visual recordings of sub-
jects of different cultures watching and discussing commercials
through an online platform [20]. In this study, we use the Ger-
man and Hungarian video chats from the SEWA corpus, where
a pair of subjects discusses the last commercial seen beforehand
in an up to 3-minutes-long video chat. This subset has already
been used as a benchmark for the 2017 and 2018 editions of
the Audio-Visual Emotion Challenge (AVEC) [4, 21]. In the
AVEC 2018 Cross-cultural Emotion Sub-Challenge (CES), par-
ticipants were invited to create a model for arousal, valence, and
liking (sentiment) on provided Training and Development sets
from the German culture and submit their predictions on a Ger-
man Test set and the whole Hungarian set, for which no gold
standard annotations were provided. For all experiments de-
scribed in this contribution, exactly the same setting is used as
for the AVEC 2018 CES challenge. The statistics of the dataset
are given in Table 1. The data was annotated by 6 (German)
and 5 (Hungarian) annotators of the respective culture and the
single ratings were fused to a unique gold standard for each
dimension using a variant of the evaluator weighted estimator,
with an output frequency of 10 Hz [4, 21]. In AVEC 2018 CES,
amodel based on different (hand-crafted and deep) acoustic and
facial features and a 2-layer LSTM is proposed as a baseline.
Time-dependent modelling was widely proposed in the con-
tributions to AVEC. In the approach by Wataraka Gamage
et al., emotional dimensions are modelled as the outputs of
time-invariant filter arrays, each filter representing a ‘salient
event’ [22]. Huang et al. employ a fusion of different (hand-
crafted and deep) feature sets and an LSTM-RNN [14] and in-
vestigate on data augmentation by cutting and overlapping the
long sequences. The AVEC 2018 CES winners, Zhao et al.
[23] use features from a pretrained deep model (VGGish [24])
for audio and an LSTM-RNN. Besides, approaches using only
hand-crafted and no deep audio features have achieved a good
performance in the past [25, 26]. Han et al. showed on the
SEWA corpus that multi-task learning, learning arousal and va-
lence contours together and using also the uncertainty between
annotators as additional targets, improved the models [27]. A
numerical overview over the results obtained on the SEWA
datasets in the AVEC 2017 and 2018 settings is given in Sec-
tion 4. For the study presented in this contribution, we focus on
the audio modality and on the prediction of the emotional di-
mensions arousal and valence as the recognition of liking typi-
cally requires the inclusion of explicit linguistic cues [21].

3. Models

The investigated models are based on hand-crafted acoustic fea-
tures. We compare two deep neural network (DNN) models: a
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model consisting of LSTM layers and a model consisting of
convolutional layers only. The features and models are ex-
plained in the following.

3.1. Acoustic features

It has previously been demonstrated that features representing
the mean and the standard deviation of the acoustic low-level
descriptors (LLDs) defined in eGeMAPS' [11] outperform both
the functionals defined in eGeMAPS and bag-of-audio-words
representations when used as an input for an LSTM-based emo-
tion recognition model [25]. Furthermore, it was also shown
that for those supra-segmental features, a small window size
of 100ms, over which the mean and standard deviation are
computed is well suited for an LSTM-backend. We use ex-
actly the same input as a baseline for the proposed approach.
The 23 eGeMAPS LLDs are extracted for all audio files us-
ing the toolkit OPENSMILE [28]. They include an expert-
defined set of acoustic descriptors relevant for affect, such as
Mel-frequency cepstral coefficients, pitch, formant frequencies,
or jitter & shimmer [11]. The mean and standard deviation for
each LLD are computed over the mentioned windows with a
step size of 100 ms to match with the gold standard annotations.
As both speakers of each session are present in a single audio
recording [21], we exploit the information on turn timings as a
single additional feature denoting speaker presence (1.0 or 0.0)
as in the work by Huang et al. (“mark method”) [14, 25]. There-
fore, in total, we use a 47-dimensional feature vector for each
100 ms step.

3.2. DNN architectures
3.2.1. LSTM model

The LSTM model is similar to the one used in our previous
work [25], achieving a performance comparable to the top per-
forming models of the AVEC challenges when considering only
the acoustic domain [29]. The model consists of 4 LSTM layers
with the default tanh activation after each layer. As the temporal
delay of the gold standard is optimised during the experiments,
i.e., the target contour is shifted back in time for a specified
interval prior to training, the choice of a uni-directional LSTM
architecture would not be fair, as it takes into account only past
context, which is shrinking with increasing delay compensation.
This effect is why, in contrast to the previous work [25], all
LSTM layers are bi-directional, i. e., they capture both past and
future context of the sequence. Thus, at each time step, any in-
formation from the whole sequence can have an effect on each
prediction. Neither dropout nor batch normalisation improved
the performance of the model. A single output neuron with a
linear activation is used as our initial experiments revealed that
the multi-target learning of arousal and valence was not benefi-
cial in this setting.

3.2.2. CNN model

The CNN model consists of 4 convolutional layers with a
ReLU activation and a single output neuron with a linear
activation. In initial experiments, a 4-layer CNN showed a
performance superior to a 2-layer architecture and a slighly
better performance than a 3-layer architecture. Each layer has
an increasing filter length spanning 5, 20, 30, and 50 time
steps, respectively. Considering all layers, for each time step,
the last layer receives a context of almost 8s from the audio
signal, given that the first and last outputs of the 1°¢, 279,
and 3"¢ convolutional layers increase the receptive field of
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Figure 1: Overview of the LSTM and CNN models. BLSTM:
Bi-directional Long Short-Term Memory, Conv: Convolutional,
FT: Fully-connected Time-distributed. Numbers in brackets de-
note the number of units/filters, the second number in the con-
volutional layers denotes the filter length (temporal context).

the last layer by the sum of their halved filter lengths. This
amount of temporal context has proven to be suitable already in
previous ERS research with static classifiers such as SVM [15].
Maximum pooling is not applied anywhere as the input features
and the target annotations have the same step size of 100 ms. As
for the LSTM model, neither dropout nor batch normalisation,
and only a single output were employed.

An overview over both the LSTM and the CNN model with
the number of units in each layer is given in Figure 1. Even
though it is difficult to compare the number of LSTM units and
CNN filters as different numbers of model parameters are con-
nected to those, we choose the same number of LSTM units and
CNN filters in each layer. It must be pointed out that the number
of units applied to both the forward-directed and the backward-
directed layer, so that the final number of units is double. In ini-
tial experiments, we observed that only using half of the num-
ber of units lead to worse results for the LSTM model. The total
number of parameters is also given in Figure 1.

4. Experiments and results

The DNNs are implemented in the KERAS (v2.2.4) framework
with TENSORFLOW backend (v1.12.0). Training and evalua-
tion are done on an NVIDIA GEFORCE GTX 745 consumer
graphics card (CUDA version 9.0.176, cuDNN version 7.3.1).
For all LSTM layers, the very fast CUuDNNLSTM implementa-
tion from KERAS is used. Training is done on the full batch of
34 sequences and ruled by the ADAgrad optimiser, with an ini-
tial learning rate of 0.001, which is close to optimum based on
previous and further experiments [25]. The number of epochs is
fixed to 500, where no improvement is found anymore for both
models, and the network weights from the epoch with the low-
est loss on the Development set are restored to predict on the
Test sets of both cultures. No post-processing is applied to the
output predictions.

The concordance correlation coefficient (CCC) is used as
both the objective function for training and as the evaluation
metric, where a CCC of 1.0 means perfect prediction and a CCC
of 0.0 represents chance level. To be consistent with the proto-
col applied in the AVEC 2018 CES [21], the CCC is computed
on the concatenated sequences for each evaluated partition. As
mentioned before, different models are trained for arousal and
valence as multi-target learning did not provide any improve-
ment in the given setting.

In the first round of experiments, the delay compensation
is optimised. For this, the arousal/valence gold standards were
shifted temporally towards the front for a certain number of sec-
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Figure 2: Optimisation of the delay compensation on the
AVEC 2018 CES Development set for both models and
arousal/valence.

onds (0.0, 0.4, ..., 6.0) for training and the predictions were
shifted back in time for the same interval. The results on the
Development set are displayed in Figure 2 for both models and
each emotional dimension. The evaluation shows that, surpris-
ingly, the delay compensation does not have a considerable
influence on the results for the CNN model, where the CCC
is quite stable over a broader range, but rather for the LSTM
model. Only for a window size larger than 5.0, the perfor-
mance drops rapidly. This result supports the findings by Huang
et al. [14] and shows that LSTMs might not learn any long-term
patterns for the given task.

The second round of experiments investigated, how the per-
formance of the CNN was affected by varying the filter lengths.
To reduce the complexity of the experiments, we only modify
the length of the last convolutional layer. As pointed out pre-
viously, due to the overlap of the previous layers, the captured
context is always a bit larger than the actual filter length. We
use the optimised delays for arousal (4.0s) and valence (2.8 s),
respectively. Results from these experiments are shown in Fig-
ures 3a (arousal) and 3b (valence) for all partitions. It is evident
that also the filter length of the final layer does not have a sub-
stantial influence on the final results. Indeed, optimisation of
the last layer’s filter length provides only a low improvement
on the Development set and no improvement on the Test sets, in
comparison with the length presumed initially.

Table 2 gives an overview of the results obtained with the
investigated models and compares them to those gained with
different other approaches from the literature. All Test set re-
sults displayed were obtained with the very same model that
performed best on the Development set. Some of these ap-
proaches were using further modalities, i.e., video or linguis-
tics, based on the ground truth transcriptions of the speech.

5. Discussion

The presented results demonstrate that the proposed CNN ar-
chitecture outperforms the LSTM architecture in all tasks, ex-
cept for arousal on the Development and the Hungarian Test set,
where matching results are achieved. While it could be argued
that the hyperparameters of the LSTM model allow for more
tuning, also the multi-modal baselines of AVEC and all tuned
systems based on only the audio modality are outperformed on
the German Test set for arousal [22, 25, 27]. For valence, our
system is superior compared to three other models, considering
the intra-cultural evaluation. For the cross-cultural evaluation,
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Figure 3: Optimisation of the filter length of the 41 layer of the CNN model.

Table 2: Comparison of results on the AVEC 2018 CES data. All results are given in terms of CCC. Missing figures (-) were not

published. GER: German, HUN: Hungarian

Model Ref. Modalities Arousal Valence
GER GER HUN GER GER HUN
Devel.  Test Test Devel. Test Test
AVEC 2017 Affect Baseline [4] optimised 373 375 - 507 466 -
AVEC 2017 Affect Winners (Chen et al.) [29] audio+video+ling. .823 .675 - 796 756 -
AVEC 2018 CES Baseline [21] audio+video 486 524 436 549 577 405
AVEC 2018 CES Winners (Zhao et al.) [23]  audio+video+ling. .820 704 .562 795 783 438
audio .604 - - Sl - -
Wataraka Gamage et al. [22] audio+ling. 440 444 310 543 537 241
Huang et al. [14]  audio+video+ling. .699 .599 456 756 721 403
Han et al. [27] audio+video 559 450 - 575 S15 -
audio .356 275 - .396 292 -
eGeMAPS-functionals + 4-layer LSTM [25] audio .586 .499 - S16 489 -
Proposed LSTM Model - audio 571 470 337 517 410 152
Proposed CNN Model (4t layer width 5.0s) - audio 564 536 339 547 479 192
Proposed CNN Model (optimised 4°® layer) - audio .568 526 338 .561 448 .186

only the model for arousal by Wataraka Gamage et al. is sur-
passed, which is based on audio and linguistics, but neither the
valence model nor the multi-modal models are surpassed. How-
ever, previous work has shown that the linguistic modality pro-
vides more meaningful cues for the recognition of valence than
the acoustics [4].

The proposed CNN model, of course, has some pros and
cons. One advantage of CNNSs is that they can be trained very
efficiently using state-of-the-art implementations. Training of
one epoch on the system described previously took approxi-
mately 10 ms (milliseconds), whereas it took around 57 ms for
the LSTM model. Nevertheless, this figure also highly de-
pends on the sequence length and as shown in other works, se-
quences can be truncated easily to speed-up training. Moreover,
we found the convergence to be faster with the LSTM model.
Decoding is also faster; it took only 3ms (CNN) and 16 ms
(LSTM) for the whole German test set on the described com-
puter system. Thus, the only factor that limits the usage of the
models in real-time applications is the amount of required con-
text. As seen in Figure 3, the context for the CNN can be limited
to approximately 4.0s to 5.0's, resulting in a delay of only 2.5's,
given that half of the context is in the past. In this regard, one
aspect that still needs to be investigated, is how a causal CNN
architecture, which does not take into account future context,
affects the performance. The same goes for LSTM, where the
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performance of a uni-directional LSTM, considering only the
past, should also be evaluated further. Finally, we have shown
that the CNN model is quite robust against delays of the gold
standard, even more robust than LSTM models, which are sup-
posed to inherently account for shifts between input and output.

6. Conclusion and outlook

We have shown that time-continuous emotion recognition in
speech does not require a recurrent deep learning architecture,
such as LSTM, to be competitive and that a fully convolutional
network achieves superior performances. Furthermore, it was
proven that neither delays of the gold standard nor the length of
the context considered by the CNN requires much optimisation,
proving the potential of this approach for real-time systems.

Future research within the framework of this work will in-
vestigate end-to-end CNN-only models for emotion recognition
and novel strategies to exploit linguistic information.
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