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Abstract
End-to-end text-to-speech (TTS) has shown great success on
large quantities of paired text plus speech data. However, la-
borious data collection remains difficult for at least 95% of
the languages over the world, which hinders the development
of TTS in different languages. In this paper, we aim to build
TTS systems for such low-resource (target) languages where
only very limited paired data are available. We show such TTS
can be effectively constructed by transferring knowledge from
a high-resource (source) language. Since the model trained on
source language cannot be directly applied to target language
due to input space mismatch, we propose a method to learn a
mapping between source and target linguistic symbols. Benefit-
ing from this learned mapping, pronunciation information can
be preserved throughout the transferring procedure. Prelimi-
nary experiments show that we only need around 15 minutes
of paired data to obtain a relatively good TTS system. Fur-
thermore, analytic studies demonstrated that the automatically
discovered mapping correlate well with the phonetic expertise.
Index Terms: end-to-end, speech synthesis, transfer learning,
cross-lingual, low-resource

1. Introduction
Recent research on end-to-end text-to-speech (TTS) [1, 2, 3,
4, 5, 6] has gained success in terms of human-like and high-
quality generated speech. Moreover, with regard to cloning
prosody style or speaker characteristics, end-to-end TTS sys-
tems also demonstrate a powerful capability [7, 8, 9, 10, 11].
However, training end-to-end TTS systems requires large quan-
tities of text-audio paired data. In order to improve data ef-
ficiency, semi-supervised training framework is proposed for
Tacotron [1] by leveraging non-parallel large-scale text and
speech resources [12]. Nevertheless, there is little discussion
on end-to-end TTS for low-resource languages, where only very
limited paired data are available.

Previous research on multi-lingual multi-speaker (MLMS)
statistical parametric speech synthesis (SPSS) has discussed us-
ing high-resource languages to help construct TTS systems for
low-resource languages. Some research shows that the model
trained on multiple languages can benefit from cross-lingual
information and aid the adaptation to new languages using
only a small amount of data [13, 14]. In their methods, lin-
guistic inputs of each language are converted internally into
language-independent representations. On the contrary, in an-
other work [15], inputs are mapped to the International Phonetic
Alphabet (IPA) [16], which is a unified canonical representa-
tion. The authors propose a language-agnostic model and also
show that the model trained on many languages is sometimes
better than the monolingual system built from small amounts

*Equal contribution

of data. Likewise, another work indicates that training data for
building a new TTS system can be reduced by pooling phono-
logically close languages, where a special phoneme inventory
is presented for sharing as more regularities across languages as
possible [17]. Although previous work demonstrates that utiliz-
ing cross-lingual information is beneficial to TTS, this idea has
not been widely studied on end-to-end TTS yet.

In this paper, we introduce cross-lingual transfer learning
for low-resource languages to end-to-end TTS. We first pretrain
a TTS model by leveraging data from high-resource (source)
language, and then try to adapt it to low-resource (target) lan-
guages. To tackle input space mismatch across languages, we
propose a Phonetic Transformation Network (PTN) model to
discover a mapping between source and target linguistic sym-
bols according to their pronunciation. The idea is similar to
probabilistic phoneme mapping model [18, 19], while our ap-
proach is pure deep-learning, and we use connectionist temporal
classification (CTC) loss [20] as the training objective. Benefit-
ing from the learned mapping, pronunciation information can be
preserved throughout the transferring procedure. Objective and
subjective tests show that a few paired data on target language is
required for our transfer learning approach to generate intelligi-
ble speech1. Under the scenario that input linguistic symbols of
source and target languages are both phonemes, our approach
is competitive with the transfer learning method which uses the
handcrafted mapping based on IPA. Furthermore, even when
lexicons of target languages are not accessible, our symbol map-
ping is still applicable and enables TTS to transfer from the
source languages with phonemes as input to target languages
with characters as input. Finally, analytic studies demonstrated
that the automatically discovered mapping correlate well with
the phonetic expertise.

2. Proposed approach
Given an input symbol sequence, end-to-end TTS system first
transforms each symbol into a symbol embedding by an em-
bedding matrix, and then according to the symbol embeddings,
a generative model2 outputs the spectrogram or raw waveform.
We can formulate end-to-end text-to-speech as

fθ,W : XL → Y (1)

where θ denotes the parameters of the generative model, W
denotes learnable symbol embeddings, and Y denotes the space
of human speech. XL is the text space for a specific language,

XL = {{st}Tt=1 | ∀t st ∈ L , T ∈ N} (2)

where L is the linguistic symbol set for this language, and T is
the length of the input symbol sequence. Our goal is to construct

1Sound demos can be found at https://henryhenrychen.
github.io/CL-transfer-demo

2For example, sequence-to-sequence model as in Tacotron [1].
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Figure 1: Approaches to transfer TTS model from source lan-
guage to target language. (a) separate symbol space, (b) unified
symbol space, and (c) learned symbol space. (d) the training
scheme of phonetic transformation network (PTN) for obtain-
ing the learned symbol space.

TTS systems for low-resource (target) languages by transfer-
ring knowledge from high-resource (source) language. We can
directly use θsrc learned from source language to initialize the
training of θtgt on target language because both θsrc and θtgt
take embeddings as input and generate speech3. However, the
same idea cannot be directly applied to Wsrc and Wtgt. An ob-
vious problem is that ssrc and stgt come from different symbol
sets, i.e., Lsrc 6= Ltgt. To deal with the input space mismatch
problem during the transferring procedure, we present two naive
baselines and propose a novel transfer learning approach which
utilizes a learned mapping between ssrc and stgt.

2.1. Separate symbol space

The first approach simply considers linguistic symbol sets for
source and target language as two different symbol sets. In this
approach, θtgt is derived by finetuning θsrc, but the target sym-
bol embeddings Wtgt is learned from scratch.

2.2. Unified symbol space

However, some of the sound units are shared by different lan-
guages. If we discard Wsrc and train new Wtgt, some use-
ful pronunciation information learned previously may be lost.
This can be resolved by mapping Lsrc and Ltgt to a unified
symbol set Luni, where the mapping is handcrafted and relies
on linguistic expertise. In this way, we can use Wsrc to ini-
tialize Wtgt because they have the same set of input symbols
Luni. Note that this method necessitates experts to design sym-
bol mapping for the source and the target language. This kind
of mapping is not always available especially when the symbol

3Here src and tgt stand for source and target, respectively.

set of one language is phoneme, while the other is character.

2.3. Learned symbol space

To preserve pronunciation information during transferring
while not using linguistic expertise, we propose Phonetic Trans-
formation Network (PTN), a model that can automatically learn
how to map source symbols to target symbols according to their
sounds.

2.3.1. Phonetic transformation network

First, we pretrain an automatic speech recognition (ASR) sys-
tem on source language, as illustrated in stage 1 of Figure 1(d).
The ASR system learns to output symbol (phoneme) sequence
of the source language by CTC loss. Afterward, we fix the pre-
trained ASR system and concatenate our proposed PTN model
with it. PTN can be formulated as

h : psrc 7→ ptgt (3)

where psrc and ptgt are probability distributions over Lsrc and
Ltgt for a specific timestep. In our case, psrc is also the ASR
output symbol posteriorgram. The concatenation of the pre-
trained ASR system and PTN is then further trained on the target
language data by maximizing the log-likelihood of target sym-
bol labellings (phonemes or characters of the target language)
using CTC loss, as illustrated in stage 2 of Figure 1(d). In stage
2, the parameters of the ASR system are fixed, so what PTN
has learned is to find the most possible target symbols given
the ASR output which are source symbols. Since the pretrained
ASR system is capable of transcribing an audio frame in target
language into a posteriorgram of source symbols, the training in
stage 2 enables PTN to learn a strategy to convert the symbols
(phoneme) of the source language into the symbols (phonemes
or characters) of the target language.

2.3.2. Symbol mapping discovery

With PTN, we can derive the most similar target symbol to a
certain source symbol according to their sound. Given the i-th
source symbol sisrc, we can simply pass a one-hot vector oi,
whose i-th dimension is marked as 1, to PTN. If the sound of
sisrc is shared among source and target language, PTN will con-
vert oi to a target symbol with high probability. Accordingly,
we can map each source symbol to a target symbol by the fol-
lowing formulation.

map(sisrc) =

{
sjtgt if hj(oi) > ξ, j = argmax

k
hk(oi)

None otherwise
(4)

where hk(·) denotes the k-th output dimension of PTN h(·),
sjtgt denotes j-th symbol in the target language and ξ is the
transformation threshold. Once obtaining the mapping, we can
transfer the embedding weight of a source symbol to its corre-
sponding target symbol. If a target symbol is mapped by many
source symbols, we transfer the embedding weight of the one
with the highest probability. For those symbols in the target
language which are not mapped by any source symbol, their
embedding weights are still learned from scratch.

3. Implementation
3.1. TTS model

In this work, we adopt original Tacotron architecture [1] as our
end-to-end TTS model, which has an encoder-decoder archi-



tecture with attention mechanism. Spectral analysis setting is
also the same as theirs [1] in the paper. Since our goal is to
study transfer learning in the small-data regime, we simply use
Griffin-Lim [21] as the waveform synthesizer and leave explor-
ing other architectures [3, 8] as our future work.

3.2. ASR and PTN model

A pure-CNN model is adopted for our ASR system, which is
modified from the previous work [22]. A pyramidal recur-
rent neural network (RNN) model [23] was also experimented,
whereas we find it performed not as expected in preliminary
studies. We conjecture that RNN with multiple layers has
learned strong language model on source language, which laid
constraints on model’s outputs and hindered the training of sub-
sequent PTN.

As for PTN, it is composed of 3-layer fully connected layers
with ReLU activation function. Dropout is also applied with 0.4
dropout rate for each layer.

4. Experiments
To verify whether TTS model can benefit from cross-lingual
transfer learning and generate clear speech with small amounts
of data, both objective and subjective tests are conducted. For
the objective tests, we use google’s cloud speech-to-text API
to recognize the generated speech and use the character error
rate (CER) as the measurement metric for clarity. Addition-
ally, we also use mel-cepstral distortion (MCD) [24] for evalua-
tion, which measures the distance between synthesis and ground
truth in the space of mel-frequency cepstrum — the smaller
the better. For subjective measurements, mean opinion score
(MOS) tests are run for naturalness assessment.

For simplicity, ”phn2phn” denotes the situation using
phoneme as input in both source and target languages, and
”phn2char” denotes the situation using phoneme input in source
language but character input in target languages. Likewise, we
denote the model that transfers with separate symbol space,
unified symbol space and learned symbol space by ”Separate”,
”Unified” and ”Learned”, respectively.

4.1. Data setup

4.1.1. Source language

In our experiments, English was selected as our high-resource
language. For pretraining an initial TTS model, LJ Speech
Dataset [25] is used, which is a public domain speech dataset
consisting of around 24 hours of text speech paired data.
As for ASR training in Section 2.3, we use the LibriSpeech
Dataset [26], which is an ASR corpus based on public domain
audio books. The training set of 100 hours clean speech and the
clean development set are utilized for training and early stop-
ping.

4.1.2. Target language

Mandarin, German, and French are chosen as the target lan-
guages. An internal corpus recorded by a female speaker is
used for Mandarin experiments. The German data derives
from the German LibriVox corpus which is organized by M-
AILABS [27]. Data from a female speaker Eva K is used. As
for French, we use the data from a female speaker FR010 in the
GlobalPhone collection [28], which only consists of approxi-
mate 18 minutes paired data. We split the data into training and

testing sets as illustrated in Table 14.

Table 1: Data statistic of target languages

Language Train(minutes) Test(utterances)

Mandarin 30 250
German 30 120
French 15 100

4.2. Experimental setup

The initial TTS model is obtained by pretraining on source lan-
guage for 10k parameter updates. For all transfer learning meth-
ods, we continue training on the target language pair with the
same initial TTS model parameters.

In ”Separate” (Section 2.1), embedding matrices for target
languages are randomly initialized according to the normal dis-
tribution with 0 mean and 0.3 standard deviation. In ”Unified”
(Section 2.2), all symbols are mapped to IPA. Accordingly, for
each symbol of the target language, we initialize its embedding
weight from the source symbol that shares the same IPA repre-
sentation. The embeddings for the remaining symbols are ran-
domly initialized as explained for ”Separate”. As for ”Learned”
(Section 2.3), ASR model in stage 1 is pretrained on source
language for 300k parameter updates and the best model is se-
lected by the development set. The training data for PTN is
the same for finetuning the TTS model on the target languages.
The transformation threshold ξ is set to 0.4 for all target lan-
guages. Finally, embeddings for target symbols are initialized
in the same way as ”Unified”, except that the mapping is now
learned automatically.

4.3. Experiment results

4.3.1. Objective tests

First of all, we show the results in the situation ”phn2phn”,
where lexicons for target languages are accessible. The CER
results are shown in Figure 2. We can see that for any language
and any amount of used target data, ”Unified” and ”Learned”
consistently outperform ”Separate”, which implies that trans-
ferring knowledge with the symbol (phoneme) mapping is ben-
eficial. When the size of target data decreases, ”Separate” de-
teriorates the most and ”Learned” sticks with ”Unified”. This
also indicates that the mapping information is especially effec-
tive under very scarce data circumstances and that our learned
mapping is competitive with the one based on IPA. Besides, we
can notice from Figure 3 that the results of MCD tests also align
with the results of CER. The model trained from scratch, where
all network weights are randomly initialized, is experimented.
However, even if all training data is used, it cannot produce
understandable speech and results in CER larger than 80% for
every language. Thus, we do not plot its results.

In addition, ”phn2char” setting is also investigated. Be-
cause under such setting, the input symbols of target languages
are characters, ”Unified” approach is not applicable. In Fig-
ure 4, a large gap between ”Learned” and ”Separate” can be ob-

4Mandarin and German use the same test sets for both CER and
MCD measurements. However, since there is very few French data and
MCD test needs ground-truth audio, we randomly select needed training
data and leave the rest for testing. This procedure is run three times and
the average score is reported.



served on German and French5. This shows that our proposed
method performs well even when source symbols are phoneme-
level and target symbols are character-level.

Figure 2: Results of CER under ”phn2phn” scenario.

Figure 3: Results of MCD tests under ”phn2phn” scenario.

Figure 4: Results of CER under ”phn2char” scenario.

4.3.2. Subjective tests

To further examine the impact of target data size on the quality
of generated speech, we conduct a series of MOS tests. We
use 25 minutes and 15 minutes Mandarin paired data for this
test under ”phn2phn” setting. The model trained from scratch
(denoted by ”Scratch”) is also measured for comparison. In
MOS tests, 40 subjects were asked to rate the naturalness for
the given speech audio and 80 audio of unseen utterances were
used for testing. Each utterance received 5 ratings at least. After
listening to each stimulus with headphone, the subjects were
asked to rate the naturalness in a five-point Likert scale score
(1: Bad, 2: Poor, 3: Fair, 4: Good, 5: Excellent).

From Table 2, we can observe that when 25 minutes of
paired data is used, three transfer learning methods ”Separate”,
”Unified” and ”Learned” perform almost the same and all of
them outperform ”Scratch”. When training data is reduced to
15 minutes, ”Separate” degrades obviously, which is consistent
with the discovery of previous objective tests. The results show
that given a few but still sufficient paired data (25 min) on the
target language, three transfer learning approaches can benefit
from pretraining and generate intelligible speech. When paired
data becomes fewer (15 min), our proposed approach ”Learned”
is comparable to ”Unified” and gives promising results without
using background linguistic expertise.

4.4. Symbol mapping studies

In this part, we show that our learned symbol mappings are rea-
sonable and evaluate them according to IPA under ”phn2phn”

5Because the characters of Mandarin correspond to syllable instead
of phoneme, ”phn2char” is not reasonable for Mandarin, so its perfor-
mance is not presented here.

Table 2: Mean Opinion Score (MOS) ratings with 95% confi-
dence intervals for naturalness.

MOS score
Method 25 minutes 15 minutes

Ground Truth 4.89± 0.045
Separate 3.94± 0.085 2.90± 0.176
Unified 4.01± 0.085 3.48± 0.119
Learned 3.99± 0.086 3.46± 0.117
Scratch 1.39± 0.153 1.26± 0.094

Table 3: Precision and recall of found mapping on 15-minute
target data.

Mapping Precision Recall Recallrandom

EN→ DE 82.6% 63.3% 3.4%
EN→ FR 73.7% 56.0% 4.0%
EN→ ZH 64.7% 47.8% 4.5%

setting. If one source phoneme and its learned corresponding
target phoneme share the same IPA representation, we regard
this learned mapping correct. To calculate recall score, we de-
rive total correct mappings from the overlap of two language
phoneme sets after being mapped to IPA. For the sake of com-
parison, we also show the recall score in the case that each
source phoneme is randomly mapped to a target phoneme in the
overlap. From Table 3, we can observe that our method retrieves
highly informative mapping and is far better than random guess-
ing. Besides, we can notice that our method performs better on
German and French than on Mandarin, which may result from
the similarity to the source language, English. Despite relatively
low recall score on Mandarin, our method still discovers some
mappings between two similar-sounding phonemes which have
different IPA representations. For example, symbol <ù> and
symbol <S> are mapped. Although they are not identical ac-
cording to IPA, their pronunciations are quite alike and similar
to ”sh” in English. For more details about the learned mapping
please refer to the demo page.

5. Conclusion
In this paper, we explored cross-lingual transfer learning in
end-to-end TTS for low-resource languages. We proposed an
approach to discover cross-lingual symbol mapping for help-
ing model better transferred with knowledge learned previously
from abundant source data. Experiment results show that our
method enables the model to produce far more natural-sounding
speech than the model trained only on target data and achieves
promising results compared with the method using strong lin-
guistic background expertise.
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