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Abstract—The majority of multichannel speech enhancement
algorithms are two-step procedures that first apply a linear
spatial filter, a so-called beamformer, and combine it with a
single-channel approach for postprocessing. However, the serial
concatenation of a linear spatial filter and a postfilter is not
generally optimal in the minimum mean square error (MMSE)
sense for noise distributions other than a Gaussian distribution.
Rather, the MMSE optimal filter is a joint spatial and spectral
nonlinear function. While estimating the parameters of such a
filter with traditional methods is challenging, modern neural
networks may provide an efficient way to learn the nonlinear
function directly from data. To see if further research in this
direction is worthwhile, in this work we examine the potential
performance benefit of replacing the common two-step procedure
with a joint spatial and spectral nonlinear filter.

We analyze three different forms of non-Gaussianity: First, we
evaluate on super-Gaussian noise with a high kurtosis. Second, we
evaluate on inhomogeneous noise fields created by five interfering
sources using two microphones, and third, we evaluate on real-
world recordings from the CHiME3 database. In all scenarios,
considerable improvements may be obtained. Most prominently,
our analyses show that a nonlinear spatial filter uses the available
spatial information more effectively than a linear spatial filter
as it is capable of suppressing more than D − 1 directional
interfering sources with a D-dimensional microphone array
without spatial adaptation.

Index Terms—Multichannel, speech enhancement, nonlinear
spatial filtering, neural networks

I. INTRODUCTION

IN our everyday life, we are surrounded by background noise
for example traffic noise or competing speakers. Hence,

speech signals that are recorded in real environments are
often corrupted by noise. Speech enhancement algorithms are
employed to recover the target signal from a noisy recording.
This is done by suppressing the background noise or reducing
other unwanted effects such as reverberation. This way, speech
enhancement algorithms aim to improve speech quality and
intelligibility. Their fields of application are manifold and range
from assisted listening devices to telecommunication all the
way to automatic speech recognition (ASR) front-ends [1], [2].

If the noisy speech signal is captured by a microphone
array instead of just a single microphone, then not only tempo-
spectral properties can be used to extract the target signal but
also spatial information. Spatial filtering aims at suppressing
signal components from other than the target direction. The
filter-and-sum beamforming approach [3, Sec. 12.4.2] achieves
this by filtering the individual microphone signals and adding
them. In the frequency domain, this means to compute the
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Fig. 1: (a) Illustration of the commonly employed two-
step processing using a linear spatial filter (beamformer)
followed by a single-channel postfilter. (b) Illustration of the
nonlinear spatial filter investigated in this paper, which joins the
spatial and spectral processing into a non-separable nonlinear
operation.

scalar product between a complex weight vector and the vector
of spectral representations of the multichannel noisy signal.
Hence, the beamforming operation is linear with respect to the
noisy input.

The beamforming weights are chosen to optimize some
performance measure. For example, minimizing the noise
variance subject to a distortionless constraint leads to the well-
known minimum variance distortionless response (MVDR)
beamformer [4, Sec. 3.6]. The noise suppression capability of
such a spatial filter alone is often not sufficient and a single-
channel filter is applied to the output of the spatial filter to
improve the speech enhancement performance. The second
processing stage in this two-step processing scheme is often
referred to as the postfiltering step.

Single-channel speech enhancement has a long research
history that has led to a variety of solutions like the classic
single-channel Wiener filter [3, Sec 11.4] or other estimators
derived in a statistical framework [5]–[7]. Many recent advances
in single-channel speech enhancement are driven by the
modeling capabilities of deep neural networks (DNNs) [8]–
[11].

It seems convenient to independently develop a spatial filter
and a postfilter and combine them into a two-step procedure
afterward as shown in Figure 1a. If the noise follows a Gaussian
distribution, this approach can even be regarded as optimal in
the MMSE sense as Balan and Rosca [12] have shown that
the MMSE solution can always be separated into the linear
MVDR beamformer and a postfilter. However, this separability
into a linear spatial filter and a postfilter only holds under the
restrictive assumption that the noise is Gaussian distributed. The
work of Hendriks et al. [13] points out that the MMSE optimal
solution for non-Gaussian noise joins the spatial and spectral
processing into a single nonlinear operation. Throughout this
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work, we call such an approach a nonlinear spatial filter for
brevity even though spectral processing steps are also included.
An illustration is given in Figure 1b.

The result of Hendriks et al. reveals that the common two-
step multichannel processing scheme cannot be considered
optimal for more general noise distributions than a Gaussian
distribution. This leads to the question if we should invest
in the development of nonlinear spatial filters for example
using DNNs. Today, single-channel approaches often use the
possibilities of DNNs to learn complex nonlinear estimators
directly from data. In contrast, the field of multichannel speech
enhancement is dominated by approaches that use DNNs only
for parameter estimation of a beamformer [14], [15] or restrict
the network architecture in a way that a linear spatial processing
model is preserved [16]. Only a few approaches with and
without DNNs [17]–[19] have been proposed that extend the
spatial processing model to be nonlinear. Still, the questions
of how much we can possibly gain by doing this, in which
situations, and also where the benefit of using a nonlinear
spatial filter comes from have not been addressed adequately.
These are the questions that we aim to investigate in this paper.

This work is based on a previous conference publication [20].
In [21] we have studied related aspects of these questions. Here,
we extend our previous work by more detailed derivations and
new analyses that provide some insight into the functioning of
the nonlinear spatial filter. In Section III, we provide a detailed
overview of the theoretical results from a statistical perspective.
We include the previously outlined results and also provide a
new simplified proof for the finding of Balan and Rosca in
[12]. We then evaluate the performance benefit of a nonlinear
spatial filter for heavy-tailed noise in Section IV-A, for an
inhomogeneous noise field created by five interfering human
speakers in Section IV-B, and real-world noise recordings
in Section IV-C. In Section V, we investigate the improved
exploitation of spatial information by the nonlinear spatial
filter and discuss practical issues of the used analytic nonlinear
spatial filter. Even though nonlinear spatial filters would most
likely be implemented using DNNs in the future, in our analyses
we rely on statistical MMSE estimators to provide more general
insights than by using DNN-based nonlinear spatial filters
which would be highly dependent on the network architecture
and training data.

II. ASSUMPTIONS AND NOTATION

We assume that the signals recorded by a D-dimensional
microphone array decompose into a target speech and a noise
component. For each microphone-channel ` ∈ {1, ..., D}, we
segment the time-domain signal into overlapping windows and
transform the signal to the frequency domain using the discrete
Fourier transform (DFT) to obtain the DFT coefficients Y`(k, i)
with frequency-bin index k and time-frame index i. Throughout
this work, we use segments of length 32 ms with 16 ms shift
and apply the square-root Hann function for spectral analysis
and synthesis. By the additive signal model, the noisy DFT
coefficient can be written as the sum of the clean speech and
the noise DFT coefficients S`(k, i) ∈ C and N`(k, i) ∈ C, i.e.,

Y`(k, i) = S`(k, i) +N`(k, i). (1)

As we model the DFT coefficients to be random variables
and assume independence with respect to the frequency-bin
and time-frame index, we drop the indices (k, i) to simplify
the notation. We indicate random variables with uppercase
letters and use lowercase letters for their respective realization.
Furthermore, we assume all DFT coefficients to be zero-mean
and speech and noise to be uncorrelated.

We stack the noisy and noise DFT coefficients into vectors
Y = [Y1, Y2, ..., Y`]

T ∈ CD and N = [N1, N2, ..., N`]
T ∈

CDand obtain the vector of speech DFT coefficients S ∈ CD
by multiplying the clean speech signal coefficient S ∈ C
with the so-called steering vector d ∈ CD, which accounts
for the propagation path between the target speaker and the
microphones. We can then rewrite the signal model as

Y = dS + N. (2)

The noise correlation matrix is denoted by Φn = E[NNH ] ∈
CD×D with the statistical expectation operator E and (·)H
denoting the Hermitian transpose. The spectral power of the
target speech signal is given by σ2

s = E[|S|2] ∈ R+. When
appropriate, we use the polar representation for complex-valued
quantities, e.g., s = |s|ejϕs ∈ C, and then let ϕ denote the
phase of the complex number.

III. LINEARITY OF THE OPTIMAL SPATIAL FILTER

In this section, we aim to provide a more complete picture of
the nature of the optimal spatial filter by aggregating existing
results and presenting more straightforward derivations for
some of these. We identify the noise distribution as the key to
linearity versus non-linearity of the spatial filter and also to
the separability of spatial and spectral processing. Accordingly,
in our considerations we distinguish the two cases of Gaussian
distributed noise and non-Gaussian distributed noise or, more
precisely, noise that follows a Gaussian mixture distribution.

A. Gaussian Noise

We start with revisiting the results from Balan and Rosca
[12] and then provide a simplified proof that may be easier to
follow. We assume that the vector of noise DFT coefficients N
follows a multivariate complex Gaussian distribution with zero
mean and covariance matrix Φn, i.e., N ∼ CN (0,Φn). As we
employ an additive signal model, the conditional distribution
of the noisy DFT coefficient vector Y given information on
the reference clean speech DFT is a multivariate complex
Gaussian distribution centered around the vector of clean speech
DFT coefficients ds with the same covariance matrix Φn. The
corresponding conditional probability density function (PDF)
is given by [22, Thm. 15.1]

pY(y|s) =
1

πD|Φn|
exp

{
−(y − ds)HΦ−1n (y − ds)

}
. (3)

Our goal is to show that the linear MVDR beamformer defined
as

TMVDR(y) =
dHΦ−1n y

dHΦ−1n d
(4)
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is the optimal spatial filter with respect to the maximum a
posteriori (MAP), MMSE and maximum likelihood (ML) opti-
mization criterion if the noise follows a Gaussian distribution.

Balan and Rosca [12] rely on the concept of sufficient
statistics to prove the property in question for the MMSE
optimization criterion. In our context, the MVDR beamformer
TMVDR is a sufficient statistic in the Bayesian sense if

pS(s|y) = pS(s|TMVDR(y)) (5)

holds for every observation y and every prior distribution of
S [23, Thm. 2.4]. We infer from (5) that all information about
S contained in the noisy observation is retained in the output
of the MVDR beamformer despite the fact that the MVDR
beamformer reduces the dimension of the multidimensional
input to one dimension. Note that the variable of interest S in
the above definition is a random variable. In contrast, TMVDR
is a sufficient statistic in the classical sense for the true clean
speech DFT coefficient s, which is not assumed to be a random
variable, if the conditional distribution of the noisy observation
Y given TMVDR(Y) does not depend on s [24, Def. IV.C.1].

As a first step, Balan and Rosca deduce that the MVDR
beamformer is a sufficient statistic in the classical sense from
the Fisher-Neyman factorization theorem [24, Prop. IV.C.1]
[25, Cor. 2.6.1], which is applicable since the conditional PDF
of the observation Y given S in (3) can be rewritten as

pY(y|s) =
1

πD|Φn|
exp{−yHΦ−1n y}︸ ︷︷ ︸
h(y)

× exp
{

dHΦ−1n d
(
2 Re {s∗TMVDR(y)} − |s|2

)}
︸ ︷︷ ︸

g(s,TMVDR(y))

= h(y)g(s, TMVDR(y))

= h(y)g(s, z). (6)

under the Gaussian noise assumption. In the last line of equation
(6), we replaced the random variable TMVDR(Y) with Z, i.e.,

Z = TMVDR(Y), (7)

and will now continue to use this substitute when it improves
the readability. In a second step, Balan and Rosca conclude that
the MVDR beamformer is a sufficient statistic in the Bayesian
sense because any statistic that is sufficient in the classical
sense is also sufficient in the Bayesian sense [23, Thm. 2.14.2].

We now provide a proof of the TMVDR being a sufficient
statistic of S in the Bayesian sense, which does not require a
reference to advanced stochastic theorems. For this, we compute
a factorization of the likelihood PDF of Z pZ(z|s) with Z
defined in (7) as the output of the MVDR beamformer for the
noisy input Y. From the properties of the multivariate complex
Gaussian distribution undergoing a linear transformation [22,
Appx. 15B], we infer that Z given S is distributed according
to a one-dimensional complex Gaussian distribution with mean
s and variance (dHΦ−1n d)−1, i.e.,

pZ(z|s) = CN
(
s, (dHΦ−1n d)−1

)
. (8)

The corresponding PDF at the output of the beamformer can
be factorized as

pZ(z|s) =
dHΦ−1n d

π
exp{−yHΦ−1n y |z|}︸ ︷︷ ︸

f(y)

× exp
{

dHΦ−1n d
(
2 Re {s∗z} − |s|2

)}
︸ ︷︷ ︸

g(s,z)

= f(y)g(s, z). (9)

Using (6) we rewrite the posterior distribution as

pS(s|y) =
p(y|s)p(s)∫

C p(y|s)p(s)ds

=
h(y)g(s, z)p(s)∫

C h(y)g(s, z)p(s)ds
.

(10)

Since the term h(y) in the denominator does not depend on the
integration variable s, this term cancels with the corresponding
term in the numerator. Next, we extend the fraction with the
term f(y) from (9) to obtain

ps(s|y) =
f(y)g(s, z)p(s)∫

C f(y)g(s, z)p(s)ds

= pS(s|z)
= pS(s|TMVDR(y)),

(11)

which is the identity we wanted to prove (cf. (5)). Consequently,
as the posterior given the noisy observation y equals the pos-
terior given the output of the MVDR beamformer TMVDR(y),
we find that

TMAP(y) = arg max
s∈C

pS(s|TMVDR(y)) (12)

holds. The MVDR beamformer reduces its multidimensional
input to a single-channel output and, therefore, the right-hand
side of (12) can be seen as a single-channel postfilter working
on the output of the MVDR beamformer. Since the MMSE
estimator complies with the mean of the posterior, a similar
decomposition in a linear spatial filter and a spectral postfilter
is given by

TMMSE(y) = E[S|y]

= E[S|TMVDR(y)].
(13)

Because the relationship (5) holds for all prior distributions
of S, a decomposition of the MAP and MMSE estimators into
a linear spatial filter followed by a postfilter exist independently
from any further assumptions regarding the prior distribution
of the clean speech DFT coefficient.

Finally, we consider the ML estimator. Starting from (6) and
exploiting the monotony of the logarithm and Euler’s formula,
we find the representation

TML(y) = arg max
s∈C

pY(y|s)

= arg max
s∈C

2 Re{s∗ TMVDR(y)︸ ︷︷ ︸
=z

} − |s|2 (14)

= arg max
s∈C

2 · |s| · |z| · cos(ϕz − ϕs)− |s|2.
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Clearly, this function is maximized when the phase of s
matches the phase of TMVDR(y), as then the cosine function
is maximized. Equating the derivative with respect to |s|
to zero and solving for |s| reveals that the magnitude of
the MVDR beamformer maximizes the likelihood. Thus,
TML(y) = TMVDR(y), i.e. the MVDR beamformer is the
maximum likelihood estimator of the clean speech DFT
coefficient as also stated in [26, Sec. 6.2.1.2].

B. Non-Gaussian Noise

As we have seen, if the noise DFT coefficients follow a
Gaussian distribution, then a linear spatial filter can be consid-
ered optimal. However, Hendriks et al. [13] have shown that
this does not need to be the case for non-Gaussian distributed
noise. In their work, they model the noise distribution with
a multivariate complex Gaussian mixture distribution. The
M Gaussian mixture components with respective covariance
matrix Φm, m ∈ {1, ...,M}, are assumed to be zero-mean
such that the conditional PDF given the clean speech is given
by

pY(y|s) =

M∑
m=1

cmCN (ds,Φm). (15)

with mixture weights cm that sum to one. Hendriks et al.
assume that the amplitude AS and phase ϕS of the clean
speech DFT coefficient are independent. They model the phase
to be uniformly distributed over the interval [0, 2π) and assume
the amplitude to be generalized-Gamma distributed ( [7, Eq.
1], with γ = 2 and β = ν/σ2

s ). The corresponding PDF

pAS (a) = 2

(
ν

σ2
s

)ν
Γ(ν)

a2ν−1 exp

{
− ν

σ2
s

a2
}

with ν > 0, a ≥ 0

(16)

depends on the speech shape parameter ν, and Γ(·) is the
Gamma function. Under these assumptions, Hendriks et al.
derive the MMSE estimator

TMMSE(y) = ν

M∑
m=1

cmQm
|Φm| e

[−yHΦ−1
m y] σ2

sT
(m)
MVDR(y)M(ν+1,2,Pm)

ν(dHΦ−1
m d)−1+σ2

s

M∑
m=1

cmQm
|Φm| e

[−yHΦ−1
m y]M(ν, 1, Pm)

(17)

with

T
(m)
MVDR(y) =

dHΦ−1m y

dHΦ−1m d
, Qm = (ν + dHΦ−1m dσ2

s)−ν ,

and Pm =
σ2
sd

HΦ−1m d
∣∣∣T (m)

MVDR(y)
∣∣∣2

ν(dHΦ−1m d)−1 + σ2
s

withM(·, ·, ·) being the confluent hypergeometric function [27,
Sec. 9.21]. From (17) it is apparent that the MMSE estimator
cannot be decomposed in a linear spatial filter and a spectral
postfilter. This is because the linear term T

(m)
MVDR as well as

the quadratic term yHΦ−1m y depend on the summation index

m. The spatial nonlinearity is particularly evident from the
aforementioned quadratic term.

Throughout this work, we compare the results of the optimal
spatially nonlinear MMSE estimator with a classical setup
comprised of a linear spatial filter and (nonlinear) spectral
postfilter. Figure 1 provides an illustration of the compared
estimators: part (b) represents the nonlinear spatial filter TMMSE
given in (17) and part (a) corresponds to a combination of the
MVDR beamformer with an MMSE-optimal postfilter. We now
derive the postfilter under the same distributional assumptions
as TMMSE.

Since the MVDR beamformer is linear, we can infer the dis-
tribution of the beamformer output and observe that it follows
a one-dimensional complex Gaussian mixture distribution with
PDF

p(TMVDR(y)|s) =

M∑
m=1

cmNC

(
s,

dHΦ−1n ΦmΦ−1n d

(dHΦ−1n d)2︸ ︷︷ ︸
σ2
m

)

)
(18)

for an input Y that is distributed according to a multivariate
complex Gaussian mixture distribution. The Gaussian mixture
components have the mean s and variance σ2

m, m ∈ {1, ...,M}.
Based on this observation, we compute the MMSE-optimal
spectral postfilter using [27, Eq. 3.339, Eq. 6.643.2, Eq. 9.220.2]
and [28, Eq. 10.32.3] and obtain the estimator

TMVDR-MMSE(y) =

ν

M∑
m=1

cmQm
σ2
m

e

[
− |TMVDR(y)|2

σ2m

]
σ2
sTMVDR(y)M(ν+1,2,Pm)

νσ2
m+σ2

s

M∑
m=1

cmQm
σ2
m

e

[
− |TMVDR(y)|2

σ2m

]
M(ν, 1, Pm)

(19)

with

Φn =

M∑
m=1

cmΦm, σ2
m =

dHΦ−1n ΦmΦ−1n d

(dHΦ−1n d)2
,

Qm = (
1

σ2
m

+
ν

σ2
s

)−ν and Pm =
σ2
sσ
−2
m |TMVDR(y)|2

νσ2
m + σ2

s

.

that sequentially combines linear spatial processing with
MMSE-optimal spectral postprocessing as depicted in Figure
1a.

IV. EVALUATION OF THE BENEFIT OF A NONLINEAR
SPATIAL FILTER IN NON-GAUSSIAN NOISE

Section III points out that using a nonlinear spatial filter
is MMSE-optimal and, thus, may be beneficial if the noise
does not follow a Gaussian distribution. It is well known that
the DFT coefficients of speech are often better modeled by a
more heavy-tailed distribution than a Gaussian if originating
from short-time Fourier transform (STFT) segments with short
duration [6], [29]. Consequently, one may argue that this as
well applies to noise DFT coefficients if the background noise
stems from human speakers. In any case, Martin [29] observed
that heavy-tailed distributions also provide a good fit for DFT
coefficients of some types of noise in the one-dimensional
case.
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In this section, we investigate the potential of the optimal
nonlinear spatial filter versus the classical separated setup with
a linear spatial filter and a spectral postfilter for noise with a
non-Gaussian distribution. Section IV-A presents our findings
for noise that departs from Gaussianity by means of heavier
tails but with a rather simple spatial structure. We published
parts of this analysis and of the analysis in Section IV-C in
[20]. However, here we also include the multichannel Wiener
filter for comparison, compute more detailed performance
metrics, and have made changes to the speech power parameter
estimation scheme. In Section IV-B we provide results for noise
that is modeling a spatially more diverse noise field created
by five interfering human speakers and in Section IV-C we
evaluate the nonlinear spatial filtering approach based on real-
world noise recordings from the CHiME3 database. Please find
audio examples for all experiments on our website1.

A. Heavy-tailed noise distribution

In our first experiment, we investigate the performance of the
nonlinear spatial filter TMMSE by mixing the target speech signal
at the microphones with multichannel noise that is sampled
from a heavy-tailed Gaussian mixture distribution.

1) Noise distribution model: We construct a Gaussian
mixture distribution with an adjustable heavy-tailedness by
combining Gaussian components with scaled versions of the
same covariance matrix. Therefore, we set the mth mixture
component’s covariance matrix Φm to be

Φm =
bm−1

r
Φn with r =

M∑
m=1

cmb
m−1 (20)

and scaling factor b ∈ R+. The constant r ensures correct
normalization such that the overall covariance matrix of our
scaled Gaussian mixture distribution remains Φn.

We rely on the kurtosis to quantify the heavy-tailedness of the
scaled Gaussian mixture distributions. It is a statistical measure
that accounts for the likelihood of the occurrence of outliers
[30] and it has been extended for real-valued multivariate
distributions by Mardia [31]. We extend it to complex-valued
random vectors X ∈ Cn with mean µ and covariance Cx by
defining its kurtosis to be

κC(X) = E
[
(2(X− µ)HC−1x (X− µ))2

]
. (21)

A complex-valued n-dimensional Gaussian distribution can
equivalently be formulated as a real-valued 2n-dimensional
Gaussian distribution [22, Thm. 15.1]. The additional factor of
two in (21) ensures that the same kurtosis value results for both
formulations of the same distribution. Using [32, Sec. 8.2.4],
we compute the kurtosis of a vector N distributed according
to a scaled Gaussian mixture distribution to obtain

κC(N) = 2D(2 + 2D)

M∑
m=1

cm
b2(m−1)

r2︸ ︷︷ ︸
q

(22)

and observe that κC(N) is given by the kurtosis of a D-
dimensional complex Gaussian distribution multiplied by a

1https://uhh.de/inf-sp-nonlinear-spatial-filter-tasl2021
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Fig. 2: perceptual objective listening quality analysis (POLQA),
scale-invariant signal-to-distortion ratio (SI-SDR), scale-
invariant signal-to-interference ratio (SI-SIR) and scale-
invariant signal-to-artifacts ratio (SI-SAR) results for scaled
Gaussian mixture noise distributions with increased heavy-
tailedness in diffuse noise.

factor q that depends on the scaling factor b and the number
of mixture components M .

2) Experimental setup: In our test scenario, we use five
microphones arranged in a linear array with 5 cm spacing
and broadside orientation towards the target signal source
and model the propagation path between the target speaker
and the microphones based on time delays only. We perform
the evaluation using 48 clean speech signals taken from the
WSJ0 dataset [33] that are balanced between female and male
speakers. The noise DFT coefficients are samples from a scaled
Gaussian mixture distribution with scale factor b = 2 and a
variable number of mixture components with equal weight
cm = 1

M , m ∈ {1, ...,M}. The noise covariance matrix Φn

models a diffuse noise field with a small portion (factor of
0.05) of additional spatially and spectrally white noise as in
[34, Eq. 27]. The noise and speech are combined such that a
signal-to-noise ratio (SNR) of 0 dB is obtained.

3) Performance evaluation: Figure 2 provides a performance
comparison of the jointly spatial and spectral nonlinear TMMSE
and the spatially linear TMVDR-MMSE with a nonlinear postfilter.
The speech shape parameter is set to ν = 0.25 for both
estimators. Furthermore, we display results obtained with the
well-known linear spatial filter TMVDR without a postfilter and
the multichannel Wiener filter TMWF, which is the MMSE-
optimal solution if noise and speech follow a Gaussian
distribution, i.e., TMVDR-MMSE with ν = 1 and M = 1. The
performance results are displayed with respect to the kurtosis
factor q on the x-axis indicating an increased heavy-tailedness
of the noise distribution from left to right.

The plot in the upper left corner shows the performance with
respect to the improvement of the POLQA measure [35], which
is the successor of perceptual evaluation of speech quality

https://uhh.de/inf-sp-nonlinear-spatial-filter-tasl2021
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(PESQ) [36] and returns the expected mean opinion score
(MOS), which takes values from one (bad) to five (excellent).
In any plot of Figure 2, we are particularly interested in the
performance difference of the TMMSE (red) and TMVDR-MMSE
(blue) as this gap characterizes the potential performance
gain of a nonlinear spatial filter. For POLQA, we observe
an increase of the performance difference up to 1.1 POLQA
score improvement as the noise distribution shifts towards a
more heavy-tailed distribution.

The estimators including a postfilter, TMMSE, TMVDR-MMSE,
and TMWF, require an estimate of the speech power spectral
density (PSD) σ2

s . In contrast to our previous paper [20],
here we do not rely on oracle knowledge of the clean speech
signal to estimate this parameter but obtain an estimate from
the noisy signal based on the cepstral smoothing technique
[37]. This results in an increased performance gap between
TMMSE and TMVDR-MMSE. From this finding, we conclude that
a nonlinear spatial filtering approach is even more beneficial if
the performance of the postfilter decreases due to estimation
errors of the spectral power of the target speech signal.

The next three plots (upper right and second row) display
the performance results for the SI-SDR, SI-SIR, and SI-SAR
measures as defined in [38]. We compute the SI-SDR, SI-SIR,
and SI-SAR for segments of length 10 ms without overlap
and include only segments with target speech activity similar
to the computation of the segmental SNR in [39]. The
performance results based on the SI-SDR measure show a
similar structure to the ones obtained with POLQA. For high
kurtosis values, we observe a performance gap of 4.5 dB for
TMMSE and TMVDR-MMSE. Furthermore, the difference between
TMVDR-MMSE and TMWF for high kurtosis values, which results
exclusively from the different postfilter, is more obvious. The
observed performance gaps, in particular the performance
advantage of the nonlinear spatial filter, coincide with our
own listening experience1.

For the computation of the SI-SIR and SI-SAR measure
displayed in the second row, the residual noise is split into
interference noise and artifacts. It is striking to see that the red
graph of TMMSE runs above the blue graph of TMVDR-MMSE in
both plots meaning that the nonlinear spatial filter achieves
better noise reduction and fewer speech distortions at the
same time. The better performance with respect to the SI-SAR
measure is quite notable as we can see that the linear MVDR
beamformer introduces very few speech distortions but its
combination with different postfilters (TMVDR-MMSE and TMWF)
still performs worse than the joint spatial and spectral non-
linear processing by TMMSE.

B. Inhomogeneous noise field (interfering speech)

Instead of sampling a Gaussian mixture distribution as in
the previous section or in [21], we now use a setup with five
interfering point sources arranged as illustrated in Figure 3 and,
this way, move closer towards realistic noise scenarios. The
estimators TMMSE and TMVDR-MMSE have been derived under
a Gaussian mixture noise assumption. To be consistent with
this modeling assumption, we require the five interfering point
sources to not be Gaussian distributed or not be simultaneously

0◦
microphone

target speech source

noise source

Fig. 3: Illustration of the experiment setup with a two-
dimensional linear microphone array, a target speech source in
broadside direction and five interfering point sources (human
speakers (Section IV-B) or Gaussian bursts (Section V)).

Interfering speech Gaussian bursts

∆ POLQA 0.84 ± 0.04 2.64 ± 0.08

∆ SI-SDR 4.63 ± 0.15 9.92 ± 0.30
∆ SI-SAR 3.91 ± 0.16 8.39 ± 0.26
∆ SI-SIR 6.44 ± 0.22 14.95 ± 0.46

ESTOI (noisy) 0.49 ± 0.01 0.57 ± 0.02
ESTOI (TMMSE) 0.85 ± 0.01 0.94 ± 0.00
ESTOI (TMVDR-MMSE) 0.72 ± 0.01 0.67 ± 0.02

TABLE I: Performance results (mean and the 95% confidence
interval) of the TMMSE and TMVDR-MMSE estimators for an
inhomogeneous noise field with interfering speech and Gaussian
sources as described in Section IV-B and Section V respectively.

active per time-frequency bin, because otherwise the overall
noise resulting from the different interfering sources would
also be Gaussian distributed. Choosing human speakers as
interfering sources, this assumption is commonly assumed to
hold and referred to as w-disjoint orthogonality [40].

1) Experimental setup: As can be seen in Figure 3, the target
speech source is placed in the broadside direction of the two-
dimensional linear microphone array with 6 cm microphone
spacing. We sample the target speech signal and the interfering
signals from distinct subsets of the WSJ0 dataset. The two-
dimensional noise signal is then obtained by multiplying the
interfering speech signals with the steering vectors di, i ∈
{0, ..., 4}, and adding the individual interfering sources’ signals.
The steering vector di of the ith interfering source positioned
at θi = π

6 + 2π
5 i radians models the relative time difference of

arrival at the microphones. The target speech signal and noise
signal are rescaled to correspond to an SNR of 0 dB.

We now compare the performance of the TMMSE and
TMVDR-MMSE estimators for the inhomogeneous noise field. For
this, we require estimates of the Gaussian mixture components’
covariance matrices Φm and the mixture weights cm. We
choose the number of components equal to the number of
interfering sources, i.e., M = 5, and estimate the Gaussian
mixture parameters using the expectation maximization (EM)
algorithm [41] applied to overlapping signal segments of length
250 ms and with an overlap of 50% from the pure noise signal.
As before, we estimate the spectral power of speech using the
cepstral smoothing technique and use a speech shape parameter
ν = 0.25.
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2) Performance evaluation: The first column of Table I
displays the performance results for the described simulation.
For the performance measures in the first four rows, preceded
with a ∆ symbol, we report the performance difference between
TMVDR-MMSE and TMMSE averaged over 48 samples. We
observe that the nonlinear spatial filter delivers a considerable
performance gain that amounts to 4.63 dB SI-SDR and a
POLQA score of 0.84. The bottom part of Table I presents
ESTOI [42] scores for the noisy signal and the enhancement
results obtained with TMMSE and TMVDR-MMSE. The ESTOI
scores provide a measure of speech intelligibility. As for the
other performance measures, we find that the nonlinear spatial
filter outperforms the combination of a linear spatial filter and
a postfilter as the TMMSE estimator yields an ESTOI score of
0.85 as opposed to the result of 0.72 achieved by TMVDR-MMSE.

C. Real-world CHiME3 noise

Furthermore, we investigate the performance of the nonlinear
spatial filter for real-world noise from the CHiME3 database
[43] that has been recorded in four different environments: a
cafeteria, a moving bus, next to a street, and in a pedestrian
area.

1) Experimental setup: The CHiME3 data has been recorded
using six microphones that are attached to a tablet computer.
For this experiment, we use the simulated training subset of
the official dataset, which has been created by mixing the
recording of real-world background noise with a spatialized
version of WSJ0 utterances. A detailed description of the data
generation process can be found in [43]. We evaluate on 48
randomly selected samples that are balanced between male and
female speakers.

As before, we require an estimate of the time-varying
Gaussian mixture distribution parameters and estimate them
using oracle knowledge of the noise signal. For this, we apply
the EM algorithm to overlapping signal segments of length
750 ms. For both, TMMSE and TMVDR-MMSE, we use ν = 0.25
and estimate the speech power σ2

s using the cepstral smoothing
technique. In addition, we need to estimate the steering vector
for the target speaker. For this, we employ oracle knowledge of
the clean speech signal and extract the steering vector estimates
as principal eigenvectors of the time-varying covariance matrix
estimates obtained by recursive smoothing.

2) Performance evaluation: Again, we assess the perfor-
mance gap between the nonlinear spatial filter TMMSE and
the separated setup with a linear spatial filter and a postfilter
TMVDR-MMSE. Figure 4 displays the SI-SDR results for these
estimators and also the MVDR beamformer TMVDR with
respect to the number of mixture components that have been
fitted to a cafeteria background noise using the EM algorithm.
While the performance of the TMMSE estimator (red) improves
with increased modeling capabilities of the mixture distribution,
neither the TMVDR nor the TMVDR-MMSE estimator benefits from
using more mixture components. As a result, we observe a
performance gap of 3.17 dB SI-SDR between the best result
obtained with the nonlinear spatial filter and the best result
obtained with the separated setup. This value coincides with
the first entry of Table II. For the POLQA measure displayed in

1 2 3 4

10

12

14

16

Number of components M

SI
-S

D
R

[d
B

]

TMMSE TMVDR-MMSE TMVDR

Fig. 4: SI-SDR results for cafeteria noise with respect to the
number of mixture components used to fit the noise distribution.

CAF BUS PED STR

∆ SI-SDR 3.17±0.19 2.48±0.26 3.31±0.24 2.07±0.28

∆ POLQA 0.59±0.06 0.38±0.07 0.56±0.05 0.28±0.04

ESTOI (noisy) 0.60±0.03 0.71±0.02 0.56±0.03 0.69±0.03
ESTOI (TMMSE) 0.94±0.01 0.97±0.01 0.93±0.01 0.96±0.01
ESTOI
(TMVDR-MMSE) 0.89±0.02 0.95±0.01 0.88±0.02 0.94±0.01

TABLE II: Performance results (mean and the 95% confidence
interval) of the nonlinear spatial TMMSE and linear spatial
filter combined with a postfilter TMVDR-MMSE for noise from
the CHiME3 databse, which has been fitted with a Gaussian
mixture distribution with four mixture components as described
in Section IV-C.

the second row, we find a difference of 0.59 POLQA score. The
table shows bigger performance differences for the cafeteria
(CAF) and pedestrian area (PED) noise than the bus (BUS)
and street (STR) noise. We suppose that this reflects that the
cafeteria and pedestrian area noise is less stationary as we hear
the most significant differences for impulse like background
noise. The ESTOI scores displayed at the bottom of Table II
indicate that the nonlinear spatial filter is not only beneficial
to the speech quality but also the speech intelligibility. Overall,
we conclude that the Gaussian noise assumption does not seem
to be valid for the examined real-world noise as the nonlinear
spatial filter provides a notable benefit also for these recordings.

V. INTERPRETATION: A NONLINEAR SPATIAL FILTER
ENABLES SUPERIOR SPATIAL SELECTIVITY

We assume that the performance benefit of the nonlinear
spatial filter reported in Section IV-B and IV-C is due to
the more efficient use of spatial information by the TMMSE
estimator. Here we support this conjecture by an experiment
that provides an insight into the functioning of the nonlinear
spatial filter.

1) Experimental setup: We use the same geometric setup
as described previously in Section IV-B (Figure 3) but replace
the interfering speech sources with sources that emit spectrally
white Gaussian signals. To match the long-term non-Gaussianity
assumption, only one interfering source emits a signal at
a specific time instance. We implement this by using short
(336 ms) non-overlapping Gaussian bursts for the interfering
sources. The so created noise signal can be viewed as stationary
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Fig. 5: Spectrograms of an example in an inhomogeneous noise field with five interfering sources emitting Gaussian noise
bursts. The second row visualizes the processing results obtained with TMVDR, TMVDR-MMSE and TMMSE and the top row shows
the clean and noisy spectrograms as well as close-ups of the fine-structure of a voiced speech segment.

regarding its spectral characteristics except at the segment
boundaries. By applying the EM algorithm to the full-length
noise signal we also model the spatial characteristics as long-
term stationary. All other experiment settings remain unchanged
as described before in Section IV-B.

2) Performance evaluation: The performance results are
displayed in the second column of Table I. For this artificial type
of noise, we observe an even greater performance difference of
9.9 dB SI-SDR and 2.6 POLQA score. In fact, the TMMSE
estimator seems to be able to recover the original signal
almost perfectly except from minor residual high-frequency
noise while TMVDR-MMSE suffers from clearly audible speech
degradation and residual noise. Audio examples can be found
online1.

Figure 5 depicts the spectrograms of the clean and noisy
signals in the top row and the spectrograms of the enhancement
results obtained by the TMVDR, TMVDR-MMSE, and TMMSE
estimators in the bottom row. The uniform green coloration of
the vertical stripes in the noisy spectrogram reflects the spectral
stationarity. The vertical dark blue lines separate segments with
different spatial properties. While the spatial diversity cannot
be seen from the spectrogram, it becomes visible from the
result of the MVDR beamformer (first in bottom row). Here,
the MVDR beamformer suppresses different frequencies for
signal segments with different spatial properties as can be seen
from the displaced horizontal dark blue lines. The described
differences between the TMVDR-MMSE (middle) and TMMSE

(right) estimators’ results are also found in the spectrograms.
A close look reveals that the nonlinear spatial filter preserves
much more of the target signal’s fine structure. Furthermore, a
comparison with the spectrogram of the clean speech signal
highlights that it suppresses background noise much better
than the TMVDR-MMSE estimator. Residual noise is visible in
the spectrogram only in some segments at a frequency of about
6 kHz.

3) Discussion: To explain these observations, we examine
the covariance matrices Φm, m ∈ {1, ..., 5}, of the Gaussian
mixture noise distribution estimated with the EM algorithm.
In Figure 6 we visualize their spatial structure based on the
directivity pattern [3, Sec. 12.5.2] that they produce when used
as noise correlation matrix in the MVDR beamformer, which
is denoted with T (m)

MVDR in (17). Furthermore, we visualize the
directivity pattern of the MVDR beamformer. The correlation
matrix Φn required to compute TMVDR is related to the mixture
component covariance matrices via

Φn =

M∑
m=1

cmΦm. (23)

The directivity pattern produced by TMVDR is displayed at the
top left followed by visualizations of the five mixture com-
ponent covariance matrices. For each of these, a pronounced
spatial characteristic can be observed by means of the horizontal
dark lines. On the right side of the directivity patterns, we
indicate the incidence angles θi of the noise sources. We notice
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Fig. 6: Directivity patterns of TMVDR (top left) and T
(m)
MVDR

(MVDR beamformer with noise correlation matrix Φm), m ∈
{1, ..., 5}. The arrows on the right side indicate the incidence
angle θi, i ∈ {0, ..., 4} of the ith interfering point source.

that each component’s covariance matrix models one of the
noise sources as apparent from the zero placed in the respective
direction by the MVDR beamformer. The second horizontal line
originates from the symmetry requirements of the directivity
pattern, which are determined by the array geometry.

In comparison, the directivity pattern of the TMVDR (top
left) does not show zeros placed into the directions of the
interfering point sources. Instead, the weighted combination in
(23) seems to eliminate some of the spatial information, which
corresponds to the well-known fact that a two-microphone
MVDR beamformer can suppress only one directional inter-
fering source but not five of them. As a result, only some
frequencies are suppressed for each interfering source as we
observed in Figure 5 before.

Figure 6 reveals how much more spatial information can
be utilized by TMMSE in comparison with TMVDR-MMSE, whose
spatial processing relies on an estimate of Φn as visualized
in the top left plot. The initial spatial filtering step using
the MVDR beamformer is not capable of suppressing the

directional sources and the remaining noise has to be filtered
by the postfilter, which then leads to some improvements. On
the other hand, the nonlinear spatial TMMSE estimator can
utilize the spatial information provided by the estimates of
covariance matrices Φm.

One could argue that a time-varying MVDR beamformer
T

(m)
MVDR with correctly chosen m would suffice to solve the

problem on the short signal segments with noise from a
single point source and a complicated nonlinear approach
is not required. However, we must point out that the step
of choosing the ‘right‘ covariance matrix is not required for
the nonlinear spatial filter. Instead, we provide the Gaussian
mixture parameters reflecting the spatial properties of the full
utterance and, nevertheless, the TMMSE estimator is capable
of suppressing five directional noise sources with only two
microphones without the need for spatial adaptation. Note that
this is an exciting finding as traditional linear spatial filters
can only suppress D − 1 interfering point sources with D
microphones without spatial adaptation [26, Sec. 6.3].

Despite the impressive performance results achieved in
this experiment, the analytic nonlinear spatial filter has some
weaknesses: it requires a very accurate estimation of the spatial
and spectral characteristics of the noise signal and is also
computationally quite demanding. In addition to the presented
experiments, we carried out simulations using measured
impulse responses between the microphones and speakers and
observed a much lower benefit from using a nonlinear spatial
filter for the experiment with five interfering Gaussian sources
even with access to oracle noise data. This is because the
spatial and spectral diversity of the noise signal increase and
many more mixture components would be required to model
the noise accurately which then results in a data problem.
Similarly, estimating the parameters of the Gaussian mixture
from a noisy signal is difficult. We approached this using masks
to identify time-frequency bins that are dominated by noise
but did not obtain reliable estimates this way.

Therefore, we conclude that the analytical estimators allow
us to study the potential of nonlinear spatial filters in principle,
but because of high sensitivity to parameter estimation errors
and high computational costs, practical nonlinear spatial filters
may be better implemented using modern machine learning
tools like DNNs.

VI. CONCLUSIONS

In a detailed theory overview, we have revisited the fact that
the multichannel MMSE-optimal estimator of the clean speech
signal is in general a jointly spatial-spectral nonlinear filter.
Therefore, the state-of-the-art concatenation of a linear spatial
filter and a postfilter is MMSE-optimal only in the special case
that the noise follows a Gaussian distribution. The experimental
section of this paper studied the performance advantage that
can be gained by replacing the generally suboptimal sequential
setup with a nonlinear spatial filter in three different non-
Gaussian noise scenarios.

First, we have shown that considerable performance im-
provements result if the noise distribution deviates from a
Gaussian distribution by an increased heavy-tailedness as the
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nonlinear spatial filter enables a higher noise reduction and
lower speech distortions at the same time. Second, we report a
performance benefit of 4.6 dB SI-SDR and of 0.8 POLQA score
for an inhomogeneous noise field created by five interfering
speech sources and, furthermore, we have observed a benefit
of about 3.2 dB SI-SDR and 0.6 POLQA score for the real-
world cafeteria noise recordings from the CHiME3 database.
In addition, we have performed experiments that revealed
that the nonlinear spatial filter has some notably increased
spatial processing capabilities allowing for an almost perfect
elimination of five Gaussian interfering point sources with only
two microphones.

The presented findings on the performance potential of
a nonlinear spatial filter motivate further research on the
implementation of nonlinear spatial filters, e.g., using DNNs
to learn the nonlinear spatial filter directly from data and
overcome the parameter estimation issues and other limitations
of the analytic nonlinear spatial filter that we have used for
this analysis.
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