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Abstract
In this paper, we propose the coarse-to-fine optimization for
the task of speech enhancement. Cosine similarity loss [1] has
proven to be an effective metric to measure similarity of speech
signals. However, due to the large variance of the enhanced
speech with even the same cosine similarity loss in high dimen-
sional space, a deep neural network learnt with this loss might
not be able to predict enhanced speech with good quality. Our
coarse-to-fine strategy optimizes the cosine similarity loss for
different granularities so that more constraints are added to the
prediction from high dimension to relatively low dimension. In
this way, the enhanced speech will better resemble the clean
speech. Experimental results show the effectiveness of our pro-
posed coarse-to-fine optimization in both discriminative mod-
els and generative models. Moreover, we apply the coarse-to-
fine strategy to the adversarial loss in generative adversarial net-
work (GAN) and propose dynamic perceptual loss, which dy-
namically computes the adversarial loss from coarse resolution
to fine resolution. Dynamic perceptual loss further improves
the accuracy and achieves state-of-the-art results compared with
other generative models.
Index Terms: speech enhancement, coarse-to-fine, deep learn-
ing, generative model, discriminative model, dynamic percep-
tual loss

1. Introduction
Speech enhancement aims at improving the quality of the
speech contaminated by the additive noise. It has quite a few
applications including noise cancelling, audio editing, prepro-
cessing for speech recognition, just to name a few. Denote the
noisy speech as y(t), we have

y(t) = x(t) + n(t) (1)

where x(t) and n(t) are respectively the clean speech and the
noise, with t being the time index. Speech enhancement tries
to recover the clean speech x1 from the noisy speech y. Tra-
ditionally, Spectral Subtraction[2] and Wiener Filtering[3] are
two popular speech enhancement algorithms. Spectral Sub-
traction approach needs to estimate the noise spectrum and
subtracts it from the noisy speech. However the characteris-
tics of the noise is not trivial to approximate, and the noise
spectrum might not be separable from the clean speech in fre-
quency domain. Wiener Filtering instead tries to recover the
clean speech by estimating the ratio between the spectrum of
the clean speech and the noisy speech. The inaccurate approxi-
mation of the ratio limits the wide application of Weiner Filter-
ing in practice. Recently, deep learning based algorithms have
shown promising results in speech enhancement[4, 5, 6, 7, 8, 9].
These approaches can be further categorized into generative
models[4, 6, 10, 11] and discriminative models[12, 13, 14, 15].

1For simplicity, we omit the time index for the audio signal.

In discriminative model, the deep neural network (DNN) takes
the noisy speech as the input and tries to predict the clean
speech, i.e. DNN is directly modeling the conditional distri-
bution p(x|y). While in generative model, conditional GAN
[16, 17] is the prevalent method for speech enhancement, which
models the distribution of p(x, z|y), with the additional variable
z being latent variables. There are two key components in GAN,
which are respectively called the generator G and the discrim-
inator D. During the training, the parameters of the generator
are tuned so that its prediction can fool the discriminator. In the
meanwhile, the discriminator also evolves to be more capable
of differentiating between the synthetic data from the generator
and the real data. The training process can be written as follows:

min
D

V (D) =− Ex,y∼pdata(x,y)[logD(x, y)] (2)

+ Ez∼pz(z),y∼pdata(y)[log(D(G(z, y), y))]

min
G

V (G) =− Ez∼pz(z),y∼pdata(y)[logD(G(z, y), y)]

+ Ex,y∼pdata(x,y)[T (G(z, y), x)] (3)

where T , usually called regularization function, is a traditional
loss function such as L1/L2 loss or cosine similarity loss. Both
[6] and [4] have shown that the GAN approach works well only
if the traditional loss term T is added in Eq. 3. This observa-
tion has also been confirmed in image synthesis[18] using con-
ditional GAN, where the training example is a pair of images
instead of audios. Note that T can be by itself used as the loss
function in discriminative models. The training of a discrimina-
tive model can be written as follows:

min
w

Ex,y∼pdata(x,y)[T (fw(y), x)] (4)

where fw is the function parametrized by w that maps noisy
speech y to the enhanced speech x̂. Comparing Eq. 4 with Eq. 3,
there is an additional term in Eq. 3 which is the adversarial loss.
In this regard, learning the generator in GAN can be seen as
the training of a discriminative model with dynamic loss as the
parameter of the adversarial loss keeps changing during train-
ing. Here the effect of z is neglected, as the one to one mapping
from y to x can still be learnt without z in GAN, producing de-
terministic outputs. The stochasticity of the prediction from the
generator is still an area of research, particularly in the one-to-
one mapping problem[18, 19, 20].

In most of previous work, the loss function T is either
computed by aggregating the L1/L2 distance[4, 21, 7] for each
component of the audio or computed by evaluating the entire
predicted audio as a whole in high dimensions such as cosine
distance loss[1, 8]. However, as far as we are aware, there is
no work in speech enhancement that optimizes the loss from
coarse to fine in training. Coarse-to-fine strategy first opti-
mizes the loss on the high dimensional audio sequences and
then gradually reduces the granularity of the evaluated sequence
to compute the loss. It not only takes advantage of fast conver-
gence from coarse granularity but also reduces saturation and
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fine tunes the details as the granularity gets finer[22, 23]. Thus
the contributions of this paper are listed as follows:

• We propose a general coarse-to-fine optimization for speech
enhancement which can be applied to both generative and
discriminative models.

• We extend the idea of coarse-to-fine to the adversarial loss in
the training of the generator of GAN and propose dynamic
perceptual loss.

• Experimental results show that the coarse-to-fine optimiza-
tion outperforms a single granularity in quantitative met-
rics. Meanwhile, the proposed coarse-to-fine optimization
and dynamic perceptual loss achieve the new state-of-the-art
for both discriminative models and generative models.

2. Basics
2.1. Cosine Similarity Loss

Cosine similarity loss[1] is widely used to measure the similar-
ity between two vectors, which is defined as:

T (x̂, x) = − x̂Tx

||x̂||2||x||2
(5)

It is chosen in our algorithm because 1) it shows better accu-
racy than L1/L2 loss even with a single granularity. 2) it can
be evaluated in different granularities, as opposed to L1/L2
loss which is essentially computed by aggregating the L1/L2
loss in every single dimension of x (the finest granularity). As
shown in Eq. 5, cosine similarity loss function actually com-
putes the cosine value of the angle between two vectors. As
the dimensionality of the vector increases, with the same cosine
similarity loss between the prediction x̂ and the ground truth
x, the number of feasible solutions of x̂ also increases which
adds uncertainties to the prediction. Therefore, if we optimize
Eq. 5 in different granularities from high dimension (coarse) to
low dimension (fine), the resulting prediction will be more con-
strained and better resemble the true audio sequence.

2.2. Time Domain vs Frequency Domain

Either the waveform or the spectrum of the audio can be the in-
put and the output of the neural network. They are in essence the
same as the Fourier Transform and Inverse of Fourier Transform
can be represented by convolutional layers with fixed weights.
However, in practice we observed that training directly from
raw waveform takes longer than training from spectrum to con-
verge to a reasonably good result. We also tried to encode the
Fourier Transform as the convolutional layer in the DNN and
initialize the corresponding layer with Fourier Transform coef-
ficients but allow those coefficients to be further fine tuned with
input and output being both raw waveform. We found the re-
sulting accuracy is not better than the case where we just use
fixed Fourier Transform coefficients. Furthermore, the train-
ing is observed more stable in frequency domain than that in
time domain. Occasionally, the training in time domain could
end with unacceptably poor results. Note that even the spec-
trum is used as the input/output, the loss can still be computed
in time domain and back-propagation can be used to train the
network because of the fact that all operations in inverse of
Fourier Transform are differentiable. Thus in this paper, the
DNN which maps the noisy speech y to the enhanced speech
x̂, is learnt in frequency domain. More precisely, we first apply
Short Time Fourier Transform (STFT)[24] to the noisy speech

Noisy Speech Enhanced Speech

Encoder Decoder

Figure 1: The network architecture of our discriminative model
and the generator of our generative model. Each block consists
of convolution/deconvolution[26], batch norm[27] and leaky
RELU[28]. The kernel shape is denoted as K: (in channel,
out channel, k height, k width) and the stride is denoted as S:
(s height, s width). The red blocks are layers 9, 7, 5, 3 from top
to bottom, where dynamic perceptual loss is computed.

and obtain its spectrum. Then instead of directly predicting the
ground truth spectrum from the input spectrum, the network
will predict a complex-valued mask of ratio constrained by a
tanh function[25]. The spectrum of the predicted audio x̂ can
be simply derived by multiplying the input spectrum with the
mask. By using the complex-valued mask as the output of the
DNN, not only the magnitude but also the phase information is
restored from the noisy input audio. In inference, the spectrum
will be converted to the waveform via inverse STFT. In training,
the cosine similarity loss will be computed on the waveform,
following the inverse STFT. In all our experiments, the time
window of STFT is 1024 with stride 256. The number of bins
in frequencies is effectively 513 as the Fourier Transformation
is applied on real numbers.

2.3. Network Architecture

Encoder-Decoder style network is popularly used in both gen-
erative model[4] and discriminative model[21, 8]. The network
architecture in our approach also follows the encoder-decoder
style, enabling our proposed approach to be directly compared
with other methods. For the discriminative model, we use the
same network architecture as cRMRn with 20 layers in [8],
a state-of-the-art discriminative approach, to produce the en-
hanced speech. Fig. 1 visualizes the structure of this network.
For our generative model (conditional GAN), the generator will
be the same as the network in our discriminative model while
the discriminator takes the encoder part of the generator as the
backbone, followed by 2 additional convolution layers and one
fully connected layer. Since the discriminator in conditional
GAN would take both the data to be classified and the condi-
tional data as input, the backbone of the discriminator will act
as a siamese network[29] and the additional convolutional lay-
ers and fully connected layers in our discriminator will further
combine them and classify whether the input data is fake or real.
With the same notation as in Fig. 1, the kernel shapes of ad-
ditional convolution layers are respectively (360, 512, 3, 5) and
(512, 512, 1, 1) without batch norm and the stride is 1. The out-
put of fully connected layer is a one-dimensional scalar. One of
the benefits from siamese network is to efficiently compute so-
called dynamic perceptual loss, which will be discussed in the
next section. Fig. 2 shows the architecture of the discriminator
network in our generative model.
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Figure 2: The network of the discriminator of our GAN model.
y: noisy speech. x/x̂: clean speech/enhanced speech.

3. Coarse to Fine Optimization
The speech signal x can be seen as either a single high dimen-
sional vector or the concatenation of multiple low dimensional
vectors. The size of the vector decides the granularity how we
divide the signal x. As mentioned earlier, computing L1/L2
loss in different granularities makes no difference as L1/L2
loss is evaluated on every component (finest granularity) of x
and then averaged. However the granularity matters when co-
sine similarity loss is computed! Denote the dimension of vec-
tors of different granularities as {gi = dim(x)

Ki
|i = 1, · · · , n}

and Ka < Kb if a < b, where Ki is the number of vectors
of ith granularity and gi is the dimension of the vector of the
corresponding granularity. When i = 1, the granularity is the
coarsest and the dimension of that granularity is just the dimen-
sion of the original signal x if we set K1 = 1. While i = n, the
original vector is divided into low dimensional vectors of the
finest granularity.

In the training, we optimize the loss function from coarsest
granularity to finest granularity. In each granularity, the loss
function can be written as

1

Ki

Ki∑
m=1

T (x̂[(m− 1)gi : mgi], x[(m− 1)gi : mgi]) (6)

where T is defined in Eq. 5 and x[s : r] = {x[s], x[s +
1], · · · , x[r − 1]} is the slicing operation. The optimization
for a particular granularity completes when the change of the
loss is small or the number of iterations reaches a maximum. In
this way, we can reduce the variance when the loss is computed
only in high dimension and better resemble our predicted audio
to the ground truth. In discriminative models, the coarse-to-fine
optimization can be directly applied in the training. While in
generative models, this strategy can also be deployed if we use
cosine similarity loss as the regularization term in Eq. 3.

The coarse-to-fine strategy is not limited to optimize the co-
sine similarity loss. It can be extended to the problems where
the objective to be optimized is not in fine granularity, but the
prediction requires finer granularity. Following this philosophy,
we propose dynamic perceptual loss. In GAN, the discrimina-
tor only gives a confidence score indicating whether the input
audio is fake or real. In practice, when we optimize the gener-
ator by minimizing Eq. 3, the first term enforce the prediction
from the generator to be like real, i.e. the confidence score from
the discriminator to be 1. However, a single score might not be
enough to supervise the generator to generate a ’real’ audio as
the spatial information is lost. Instead, the dynamic perceptual
loss will not only enforces the confidence score in the discrim-
inator, but also the deep features with different resolutions in
the intermediate layers to be similar to the real audio. Denote
the deep feature map in layer l as Dl(·) and the loss as L. The
dynamic perceptual loss (DPL) in layer l can be written as

DPLl = L(Dl(G(z, y)), Dl(x)) (7)

Since the siamese network is used in the discriminator of our

Table 1: Comparison with Other Methods: For Deep Loss, the
numbers in parentheses are what we got from their open source
code. D: discriminative model which is our own implementation
of cRMRn[8] for fair comparison. D+M: Coarse-to-fine Op-
timization of D. G: GAN with single granularity optimization.
G+M: GAN with coarse-to-fine optimization of G. G+M+P: Dy-
namic perceptual loss on top of G+M.

CSIG CBAK COVL PESQ SSNR
Wiener[3] 3.23 2.68 2.67 2.22 5.07
SEGAN[4] 3.48 2.94 2.80 2.16 7.73
WaveNet[30] 3.62 3.23 2.98 N/A N/A
MMSE-GAN[25] 3.80 3.12 3.14 2.53 N/A
Deep Loss[5] 3.86(3.79) 3.33(3.27) 3.22(3.14) (2.51) (9.86)
D[8] 3.79 3.32 3.20 2.62 9.90
D+M 3.94 3.35 3.33 2.73 9.40
G 3.83 3.27 3.20 2.57 9.36
G+M 3.94 3.33 3.31 2.67 9.50
G+M+P 4.00 3.34 3.34 2.69 9.40

generative model, it is straightforward to use it for computing
both the deep features as well as the confidence score within
the same network. Note that if we use other networks instead
of siamese network like the one used in SEGAN[4], the con-
ditional data and the data to be classified are concatenated at
the beginning of the network, which prevents us from comput-
ing the deep feature either for real audio or fake audio without
concatenating the conditional data.

4. Experiments
In this section, the experimental results show that in either dis-
criminative models or generative models, the coarse-to-fine op-
timization will improve the current state-of-the-art algorithms.
Particularly in generative models, the proposed dynamic per-
ceptual loss could further improve the accuracy obtained from
optimizing the cosine similarity loss from coarse to fine.

4.1. Dataset and Metrics

4.1.1. Dataset
We evaluate our proposed algorithm on speech enhancement
dataset by Valentini et al.[31], which is widely used in other
popular speech enhancement methods[4, 6, 5, 8]. This dataset
consists of 11572 mono audio samples for training and 824
mono audio samples for testing. The duration of the audio
ranges from 1 second to 15 seconds, with the average being
around 3 seconds. The speech is recorded at 48 kHz. In training
dataset, there are 10 different types of noise [32] added to the
clean speech with 4 signal-to-noise (SNR) values: 15dB, 10dB,
5dB and 0dB. Thus the training dataset has 40 noisy conditions
in total. In testing dataset, there are 5 types of noise which are
added to the speech with 4 SNR values being 17.5dB, 12.5dB,
7.5dB and 2.5dB. The 28 speakers [33] in training dataset are
different from the 2 speakers [33] in testing dataset, and all of
them are native English speakers.

4.1.2. Metrics
We use five objective metrics to evaluate and compare the qual-
ity of the enhanced speech by the proposed coarse-to-fine op-
timization. SSNR, with the range from −∞ to ∞, computes
the segmental SNR in dB. CSIG and CBAK [34] respectively
predict Mean Opinion Score (MOS) of the signal distortion at-
tending to the speech signal alone and the background intrusive-
ness attending to the background noise alone. COVL [34] com-
putes the MOS of the overall signal quality. CSIG, CBAK and
COVL are all measured from 1 to 5. PESQ [35], standing for
perceptual evaluation of the speech quality, is measured from
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Figure 3: The coarse-to-fine optimization is applied to state-of-
the-art discriminative model [8] and evaluated on test dataset.
The solid line is the result from coarse-to-fine optimization
and the dotted line is the result from optimizing the single-
granularity cosine similarity loss. red: CSIG, green: CBAK,
magenta: COVL, cyan: PESQ.

−0.5 to 4.5. For all these metrics, the higher the measure is, the
better quality the enhanced speech will have. As is known, there
is no single objective measure that correlates perfect with sub-
jective evaluations for different speech distortions[36]. There-
fore, we need to take all the above metrics into account when
evaluating the speech quality (SSNR is included as widely used,
though its correlation with overall speech quality is low[34]).

4.2. Discriminative Model

In this experiment, we compare our coarse-to-fine optimiza-
tion with the state-of-the-art discriminative model [8] using sin-
gle granularity optimization. Without loss of generality2, we
choose the network called cRMRn in [8] to be the network in
our discriminative model, as shown in Fig. 1. The model is
trained for 180 epochs with batch size 96 using Adam [37] op-
timizer. The initial learning rate is set to be 0.0004 and is mul-
tiplied by 0.5 at epoch 40, 80 and 120. The weight decay is
0.0005. We down-sample the input audio from 48 kHz to 16
kHz. And during training, similar to [4], we divided the orig-
inal audio into overlapped slices with the stride 213, each of
which has 214 samples (approximately 1 second). During test-
ing, as in [4], we divide the test utterance into non-overlapped
slices and concatenate the results as the final enhanced speech
for the whole duration.

In the training, we compute the cosine similarity loss for
both signal and background noise as well [8, 30] so that Eq. 5
will be sensitive to the scale change of the signal. The granular-
ity on which we compute our loss starts from the entire duration
of the speech 214 and decreases by 2 times every 20 epochs. The
finest granularity is 26. The vertical black dash line in Fig. 3 in-
dicates the moment we decrease the granularity by 2x. From the
result shown in Fig. 3, we can see our coarse-to-fine optimiza-
tion steadily outperforms the single-granularity optimization.

4.3. Generative Model (GAN)

In the GAN experiment, the batch size is reduced to 64 due to
the memory limit. And the number of epochs for training is
increased to 360 so that the effective number of epochs for the
generator training is 180 as the discriminator and generator are
trained alternatively one after the other [4]. The learning rate
for the discriminator is constantly 0.0002. All other setups are
the same as the discriminative model training. In the training
of generator, the scalar coefficient for the regularization term

2The author of [8] confirmed there is technical error in the accuracy
reported in the paper. The actual best accuracy from their method is
similar to previous state-of-the-art methods (e.g. [5]).
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Figure 4: The comparison among G(dotted line), G+M(solid
line) and G+M+P(dashed line) on test dataset. The color of
lines represents the same metric as Fig. 3.

is 40 while the coefficient for the discriminator adversarial loss
is always 1. If the perceptual loss is considered, the balancing
coefficient is 100. They are chosen in this way so that the scale
of all the terms is almost the same. The regularization term for
the generator is cosine similarity loss instead of L1 as widely
used in other GAN methods[4, 25]. We add a Gaussian noise
with mean 0.0 and variance 0.01 between the encoder and the
decoder of the generator.

As shown in Fig. 4, the plain GAN(G) means that the adver-
sarial loss is the L2 norm as used in [4] and the regularization is
cosine similarity loss. In coarse-to-fine optimization(G+M), we
optimize the regularization in a coarse-to-fine way as used in the
discriminative model. Furthermore, we apply the coarse-to-fine
strategy to the adversarial loss term, i.e. dynamic perceptual
loss(G+M+P). We start with the original L2 loss computed in
the last layer of the discriminator as G+M and every 80 epochs,
we compute the L1 loss on deep features of different resolution
between the real and the fake utterance. The particular layers
where the deep features are extracted are layer 9, 7, 5, 3. Fig. 4
clearly shows G+M+P outperforms G+M which is better than
G. In Tab. 1, we compare our results with other popular speech
enhancement algorithms. The accuracies of our models are al-
ways computed from the last iteration of the training without
picking the best in histories. Tab. 1 further shows the effective-
ness of our proposed coarse-to-fine optimization and the dy-
namic perceptual loss. The bold numbers highlight the best ac-
curacy in either discriminative models or generative models, but
not both. As shown in Tab. 1, our discriminative model (D+M)
and generative model (G+M+D) both outperform correspond-
ing state-of-the-art methods in most metrics. We also notice that
the single granularity in the discriminative model outperforms
coarse-to-fine in SSNR. This can be explained by the consistent
goal of measuring the difference over the entire speech between
SSNR and single granularity loss, while not correlating well
with overall speech quality compared with other metrics[34].

5. Conclusion and Discussion
In this paper we proposed the coarse-to-fine strategy in optimiz-
ing the cosine similarity loss for both discriminative and genera-
tive models. Inspired by the coarse-to-fine idea, we further pro-
posed the dynamic perceptual loss as the adversarial loss term
in the generator training of GAN. Our experiments show the
effectiveness of our proposed methods. In the future, we will
look into the question of the better model choice for the task of
speech enhancement: discriminative OR generative? And how
to take both of their advantages into one model is still open. Dy-
namic perceptual loss might provide a direction, and it would
also be very interesting to see whether it can be generalized to
other applications besides speech enhancement.
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