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Abstract

Speech Emotion Recognition (SER) has been shown to benefit

from many of the recent advances in deep learning, including re-

current based and attention based neural network architectures

as well. Nevertheless, performance still falls short of that of hu-

mans. In this work, we investigate whether SER could benefit

from the self-attention and global windowing of the transformer

model. We show on the IEMOCAP database that this is indeed

the case. Finally, we investigate whether using the distribution

of, possibly conflicting, annotations in the training data, as soft

targets could outperform a majority voting. We prove that this

performance increases with the agreement level of the annota-

tors.

Index Terms: speech emotion recognition, self-attention,

global windowing

1. Introduction

In the provision of automated telephone services, we are gen-

erally interested in the words spoken by a client. However, the

emotional state of the client is also important. It is an indicator

of the client’s general satisfaction with the process; it can also

be a cue for the dialogue agent to switch to a human operator.

The field of Speech Emotion Recognition (SER) is con-

cerned with the automatic detection of the emotional state of a

person from spoken utterances. The SER problem has been ad-

dressed for several years using statistical methods and machine

learning algorithms, such as Support Vector Machines (SVMs)

and various regression algorithms. Over the last decade the

available computational power has enabled the development of

neural network based deep architectures such as the attention

mechanism. Those algorithms, which are able to model more

complex patterns within speech utterances, have led to more ro-

bust models for recognizing the emotional state of the speakers.

Bidirectional recurrent neural networks (BiRNNs) in the

SER field were introduced by Lee et al. [1]. Subsequently,

Chernykh et al. [2] built on top of BiRNNs a connectionist

temporal classification (CTC) loss. In the following years sev-

eral papers showed the contribution of attention models in the

SER field. Among those, Mirasmadi et al. [3] approached the

problem using local attention, a new weighted time-pooling al-

gorithm that, instead of mean pooling over time, computes a

weighted sum of the attention output (where the weights are

learned within the model). Neumann et al. [4] used attention

on top of a convolutional neural network, showing that convolu-

tions could tackle the problem with similar performance. Ramet

et al. [5] investigated several attention methods ([6, 7, 8, 9, 10])

on the SER task. They also proposed a new attention method

applied to BiRNNs with LSTM cells using recurrent layers in

the inner computation of the attention. This model is the current

state of the art.

Although the attention mechanism combined with RNNs

has improved performance on SER, it is limited by the state of

the cell (e.g., LSTM) that can contain a limited amount of infor-

mation; it is also affected by exploding and vanishing gradient

problems [11]. For this reason we move from traditional atten-

tion mechanism to self-attention.

In audio processing, windowing is intended as very small

and local windows in which it is assumed that the audio signal

is constant. In this paper we propose a global windowing sys-

tem that works on top of the previous one, applies windows of

a larger order of magnitude and captures deeper relationships

within the utterances leading to a better expressivity of the in-

put. We propose two different downstream systems, one end-

to-end attention learning from raw audio and another one based

on a prior features extraction step, both trained with two meth-

ods: classification and regression. Moreover, to the best of our

knowledge, self-attention (see section 2) has never been used

before in the SER task. This leads to reducing training and in-

ference times and to be able to better explain the behavior of

the model given the attention weights. Finally, we show that

this approach leads to state of the art results for weighted accu-

racy (WA) and unweighted accuracy (UA).

The paper is structured in the following way: in Section 2

we describe self-attention and its application on our SER task,

the reasons behind the choice of different features set and the re-

quirements that the model should respect. In Section 3, dataset,

methods and model architecture are described. In Section 4, we

present our results and we compare them to the previous state

of the art.

2. Proposed Method

In the work of Vaswani et al. [12], it was shown how recurrent

neural networks could be substituted with self-attention. A new

attention technique based on an encoder-decoder structure that

does not use any kind of recurrence, but instead uses weighted

correlations between the elements of the input sequence, was

introduced. The role of the encoder function is to map the input

sequence into several attention matrices, while the decoder uses

those matrices to generate a new token. We will focus only on

the encoder part, since it is the one needed for the implementa-

tion of our proposed architecture. The Transformer, the model

that uses self-attention, showed to be able to get state of the art

results in translation tasks with one or two orders of magnitude

(depending on the size of the model) lower computing cost with

respect to time, than RNNs and in several other NLP tasks [13].

The concept behind the Transformer relies on the idea that

each element of the input sequence can be projected through a

linear function into three different representations of itself: a

query, a key and a value. More formally, given an input se-
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quence X:

qi = w
T
q xi, vi = w

T
v xi, ki = w

T
k xi (1)

where xi is the ith element of X and wq , wv and wk are the

linear projections that map the ith element to query, value and

key respectively. Query, value and key have a dimensionality

1× d model, where d model is an hyperparameter.

In order to exploit matrix multiplications, attention is com-

puted on the set of queries of the sequence:

z = softmax(
QKT

√
dk

)V (2)

where Q is the set of queries, K is the set of keys, V is the set of

values of the sentence and dk is a scaling factor. The variable

z obtained is the attentional matrix (N × d model), where N

is the number of elements contained in the input sequence. It is

straightforward to see that this process can be repeated several

times, stacking self-attention layers on top of each other.

A peculiarity of the Transformer is the multi-headed atten-

tion. Heads refer to the number of projections of each variable

(query, value and key) applied to each element of the input.

In order to give the model the knowledge of the order within

the sequence, it is required to add a positional encoding. This

means summing a sinusoid function with a large period over the

input before feeding it to the first encoder layer.

RNNs and attention models have drawbacks on SER which

are mitigated by using self-attention. Indeed, emotions have

long term correlations and it is known that RNNs have a decay-

ing memory that is insufficient to preserve those correlations

[11]. Self-attention sees every frame of the utterance simultane-

ously, so it cannot ”forget the past”. Moreover, each element of

the input sequence is represented with 3 ∗ nheads projections,

compared to only one representation as in the case of RNNs.

This enables a better representation of the emotions as well as

an increased expressivity of the model. Furthermore, the output

of a traditional attention mechanism and of a Transformer’s

encoder differ. The former is a matrix where each frame is

weighted given its relevance for the task and the latter is a ma-

trix where each frame is weighted with the learned correlations

with the other frames. This latter approach adds more in-

formation about the actual value of the frame within the context.

Fixed length input sequences are required in order to ap-

ply the Transformer. Generally, windowing is used to extract

features from raw audio with a small window (25ms) and small

step size (10ms). Moreover, we used a sliding window of length

W with a step size s (where s is a percentage of W ) on top of

the already extracted frames, as shown in Figure 1. The reason

Figure 1: Global sliding window with 0% (above) and 50% (be-

low) overlapping.

behind this global window is the fact that it can express rela-

tionships between datapoints that otherwise the model would

have never been able to extract. We expect that a larger window

size would lead to better results since the model would be able

to see a larger context. Furthermore, a smaller step size leads to

feeding the model more fixed length utterances with an s ∗ W

offset difference between each other, resulting in an increased

input representation.

3. Experimental setup

3.1. Input features

In this work we investigated not only the performance of a new

model, but also the performance of the model given different

inputs: our hypothesis is that learning the features extraction

phase from raw audio will lead to detect task dependent fea-

tures. For this reason, we want to create a fully end-to-end

model that we hope that will be able to automatically extract

meaningful features and compare it with a standard features

extraction method. [14], [15] and [16] are only a few of the

publications that show the effectiveness of convolution as fea-

tures extraction layers from raw audio. A drawback of this ap-

proach is that by adding the features extraction task to the model

pipeline additional complexity is added to the end to end system

increasing the need in the number of datapoints for training a ro-

bust model. The relatively small amount of training data in our

case, only 5.5 hours of speech, could lead to a partial learning

of the input representation.

As for the engineered features, we evaluated our methodology

on the IS09 [17] features set (384 features) because it is a com-

mon set used for SER tasks and it has been used by [5] to get

the latest state of the art results. Even if it is not been used as

extensively as IS09, we extracted also the eGeMaps set [18]:

this set showed to be a good substitute of IS09 in several works,

such as [19], [20] and [21]. The eGeMaps set is a good trade-

off between expressivity of the input and training times, since

it contains only 88 features that means shorter computational

times with an inferior representation of the frames. Both fea-

tures set were extracted using the openSMILE framework [22]

with a window size of 25ms and step size of 10ms.

3.2. Database

IEMOCAP database [23] was chosen for our experiments since

it has been established in the literature on the SER field as a

benchmark. Moreover, it contains high frequency recording au-

dio data (16kHz sample rate), both genders, 9 emotions and im-

provised and scripted speech, that the literature showed to have

different complexity when making inference [4], [5]. Out of

the 9 emotions we focused on four of them (angry, happy, neu-

tral and sad) in order to have comparable results with previous

research. We trained and evaluated the model a second time

without modifying the structure of the model and substituting

the happy class with the excitement one in order to compare our

results with [2].

Each utterance is labeled by three to four annotators and

the classification label is the majority label between the anno-

tations. We investigated the distribution of the four emotions

used given different levels of agreement of the annotators. As

we can see in Figure 2, the dataset is very imbalanced and the

more precision we require on the majority label, the more the

happy class shrinks.

Since understanding the quality of the dataset is essential

to create a well-performing model, we have studied the distri-

bution of annotations given the majority label. In Figure 3 we

plotted the distribution of the annotations of the four classes for
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Figure 2: Different distributions of the four emotions used de-

pending on the quality of the annotations.

each class. We notice that every class has around 75% of anno-

tations corresponding to itself except for the happy class, that

has only 68%. This result explains the ”shrinking” in Figure

2. This means that the dataset, labeled with the majority an-

notations, contains 25% or more of noise and that each sample

cannot be described with only one emotion.

Figure 3: Distribution of the annotations of angry, happy, neu-

tral and sad given the majority label.

3.3. Classification or Regression

A well known issue in the SER field is that very often the anno-

tators are not unanimous in classifying the utterances, as high-

lighted by Lotfian et al. in [24]. That is understandable since

it is rare to express only one emotion when speaking. For this

reason, we worked on two different methodologies: classifica-

tion and regression.

Classification labels are the majority labels between the anno-

tations of one utterance (categories). Regression targets, on the

contrary, do not consider the majority label, but, instead, the

proportion of the classes within the annotations (scalars). Re-

gression targets are calculated as proportion between the four

classes only. For instance, if an utterance has four annotations

that are [happy, happy, angry, excited], the target results will

be angry 0.25, happy 0.5, neutral 0, sad 0. Following the previ-

ous example, the label for classification would have been happy.

This soft labeling given by the regression targets represents a

closer distribution of the utterances’ emotional content to the

real one. Our assumption is that a better distribution of the la-

bels will lead to a better learning process of the model.

In order to remain consistent with the results between the two

methodologies, we used the same data for classification and re-

gression, even if for regression we would have not needed to

filter out the utterances with inconsistencies (that is with no ma-

jority label).

3.4. Normalization of the input

We normalized engineered features (IS09 and eGeMaps) sub-

tracting the mean and dividing by the standard deviation of neu-

tral features as proposed in [5]. For raw audio signals, we sub-

tracted the mean and divided by the standard deviation of the

signal in order to have a final mean around 0 and a final stan-

dard deviation equal to 1.

normalized x =
x−meanx neutral

stdx neutral

(3)

normalized signal =
signal −meansignal

stdsignal

(4)

3.5. Model architecture

When the input is the signal itself, the first layers of the model

are convolutions which role is to extract low level features.

These layers are made of 6 stacked one-dimensional convolu-

tions and max pooling layers plus a final linear layer that maps

the output of the convolution to the dimension of the model.

More formally, an input signal of shape 1 ×W is mapped first

to a matrix of shape N × dim and then to N × d model by the

linear layer, where N and dim are dependent by the kernel size,

stride and number of convolutions. When the input is a feature

set (N × dim), a linear layer maps each frame from dim to

d model.

In both cases, the self-attention layers will receive as input a

matrix N × d model. As explained in section 2, self-attention

layers produce an attentional matrix: each row of the matrix

represents a frame in the context of all the other frames of the

input utterance. In order to extract even deeper relationship be-

tween frames through time and to reduce the dimensionality

of the output, two-dimensional convolutional layers with max

pooling are applied on top of the attentional matrix and a final

linear layer maps the output to the number of classes.

3.6. Windowing

In order to prove our assumption that more overlapping (smaller

step size) means a better representation of the input, we repeated

training and evaluation for step sizes 0.1, 0.2, 0.3, 0.5 and 1 (no

overlapping) on five window sizes (100, 200, 300, 400 and 500

frames). As we can see from Figure 4, independent of the win-

dow size, a smaller step size leads to a smaller loss. The colored

line represent the mean of the experiments, while the colored

area is the standard deviation computed on the five experiments

for each step size.

3.7. Aggregation method

The model outputs four probabilities for every chunk produced

by the windowing process. Since our final goal is to give a pre-

diction for the original utterance, we aggregate the probabilities

originated from the same sequence doing a simple average and

using the highest one as the class prediction.

Confident of these results, we used for all our experiments

a window size of 500 frames and a step size of 50 frames

(s = 0.1).

Since the dataset is very unbalanced, especially for the happy

class, we used a weighted loss, where the weights were com-

puted starting from the number of samples obtained after win-

dowing.

4. Experimental Results

4.1. Results comparison

We used a 5-fold cross validation for each combination of input

types, i.e. IS09, eGeMaps and raw audio and methodologies,

i.e. classification and regression.
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Figure 4: Mean and standard deviation of the test (5th session)

loss for different step sizes given window sizes of 100, 200, 300,

400 and 500 frames.

Table 1: Performances of previous and our methods on the

whole dataset with a 5 fold cross validation.

Method WA UA

Neumann et al. [4] 56.1 -

Ramet et al. [5] 62.5 59.6

IS09 - classification 68.1 63.8

IS09 - regression 66.6 62.3

eGeMaps - classification 65.0 60.6

eGeMaps - regression 64.6 58.5

Raw audio - classification 64.0 57.4

Raw audio - regression 65.4 58.5

As we can see in Table 1, each method got better results

than previous state of the art: this shows that the model itself

is robust on different kinds of input. The IS09 set is the input

that performed best, getting a 5.6% and 9% absolute and rela-

tive improvement on the WA and a 4.2% and 7% absolute and

relative improvement on the UA. As expected, eGeMaps fea-

tures did not perform as well as the IS09 given their reduced

dimensionality.

Raw audio is the only input that performed better when the task

was a regression instead of a classification. This confirms our

observation that having a good distribution of the emotions over

the utterance labels means learning a features representation of

the input that is closer to the real one. We report also the results

for the improvised dataset and gender in Table 2. As shown by

[4] and [5], the improvised dataset is simpler to classify. This is

due to the naturalness of the actors when they are playing, who

give more weight on the emotional content rather than what they

are saying. It is also curious to observe that it is easier to predict

women’s emotions than men’s ones.

4.2. Annotations agreement level

As already stated, annotators often gave different answers for

the same utterance. We want to understand the performance of

our model with respect to different consistencies in the major-

ity labels. The model performs better as the consistency of the

Table 2: Performances of our model for the two genders, impro-

vised and scripted sessions using classification and IS09 fea-

tures set.

Type/Gender WA UA

M 65.71 59.59

F 69.59 65.21

Scripted 64.59 50.12

Improvised 70.17 70.85

Improvised Neumann et al. [4] 62.1 -

Improvised Ramet et al. [5] 68.8 63.7

answers increases as shown in Table 3. As expected, the better

the labeling, the better the model can perform.

Table 3: Performances of our model for different consistencies

using classification and IS09 features set.

Agreement level WA UA

2 equal answers 59.43 58.01

3 equal answers 75.59 73.97

4 equal answers 77.57 82.24

4.3. The excitement class

As can be seen in Figure 2 the amount of training data in the

happy class is relatively small in comparison with any of the

other three classes used in all our experiments. Due to this

fact, in our final experiment, the happy class was replaced with

the excitement class for having a more balanced distribution of

training data across emotions. The structure of the model was

kept unchanged and the IS09 features set was used as well. In

Table 4, we can see that our model achieves better results than

the ones of the previous task, outperforms previous work and it

starts to become comparable to human performances.

Table 4: Performances of [2] and our methods with a 5 fold

cross validation using the excitement instead of the happy class.

Method WA UA

Chernykh et al. [2] 54.0 54.0

Human performances [2] 69.0 70.0

IS09 - classification 64.33 64.79

5. Conclusions

In this paper, we demonstrated the effectiveness of a new

windowing system that is able to capture hidden relationships

within the data, improving the performances for SER. This tech-

nique combined with self-attention outperforms the previous

state of the art on the IEMOCAP dataset with respect to WA and

UA. Moreover, we conducted a study over the possible input

representations showing that the performances of the IS09 fea-

tures set are better than eGeMaps and learned features through

convolutions. Finally, we showed that a better distribution of

the emotions over the labels is necessary to learn features from

raw audio and that the performances of our model increases pro-

portionally to the agreement level of the annotators.
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