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Abstract
Millions of people reach out to digital assistants such as Siri
every day, asking for information, making phone calls, seek-
ing assistance, and much more. The expectation is that such
assistants should understand the intent of the user’s query. De-
tecting the intent of a query from a short, isolated utterance is
a difficult task. Intent cannot always be obtained from speech-
recognized transcriptions. A transcription-driven approach can
interpret what has been said but fails to acknowledge how it
has been said, and as a consequence, may ignore the expres-
sion present in the voice. Our work investigates whether a sys-
tem can reliably detect vocal expression in queries using acous-
tic and paralinguistic embedding. Results show that the pro-
posed method offers a relative equal error rate (EER) decrease
of 60% compared to a bag-of-word based system, corroborating
that expression is significantly represented by vocal attributes,
rather than being purely lexical. Addition of emotion embed-
ding helped to reduce the EER by 30% relative to the acoustic
embedding, demonstrating the relevance of emotion in expres-
sive voice.
Index Terms: paralinguistic information, acoustic embedding,
emotion embedding, recurrent neural nets.

1. Introduction
One of the key challenges faced by voice operated assistants,
such as Siri, is the interpretation of the intent of the user’s query.
For example, an intelligent assistant may need to distinguish
between a query for information on sports, a request to make a
phone call, a command to play music, or many other supported
actions. Existing systems exploit spoken language understand-
ing (SLU) to parse user queries into their corresponding intents
[1]. Typically, intent detectors are used to assign queries to as-
sociated domains for action execution, where such detectors are
trained on manually annotated text data [2] [3]. Research on in-
tent detection has primarily focused on leveraging natural lan-
guage understanding (NLU), where dialog manager [4], intent
embeddings [1], joint intent modeling with slot filling [5], and
many other approaches have been explored [6] [7]. With the
latest advances in machine learning it has become possible to
accurately recognize the words in a voice query, resulting in
useful intent detection systems.

Speech communication in humans can be broadly split into
two layers: (1) a linguistic layer, which conveys the message in
the form of words and word-meanings, and (2) a paralinguistic
layer, which conveys how those words have been said, includ-
ing vocal expressiveness. NLU has traditionally focused on (1),
but has generally not had access to (2), as such information is
embedded in the acoustic signals and is lost to the speech tran-
scription after automatic speech recognition.

The space of possible actions that an intelligent assistant
may take is typically divided into functional domains, where
each domain provides a subset of actions appropriate to a gen-
eral area. For example, a domain may exist for making and re-
ceiving phone calls, another for reading and sending messages,
and another for controlling home automation systems. When
a user invokes a digital assistant and speaks a query, the audio
is transcribed by the digital assistant’s speech recognition sys-
tem to text. Natural language processing systems parse the text
to create an intent, a structure that contains and represents the
query’s meaning or user’s intention. This intent is used in the
digital assistant’s application logic to surface appropriate dia-
log, visuals, and additional behavior for users. The work pre-
sented here investigates if it is possible to estimate the vocal
expression in a query to better understand the intent. Based on
the perceived expression, it is possible to improve intent detec-
tion performance. For example the intent behind the query to
”find the nearest police station” may be (a) a general query to
seek information, or (b) to make a call, to contact, or seek di-
rections. Vocal expressions can help in better distinguishing be-
tween such intents, which may not be obvious from the surface
form of the automatic speech transcription.

Vocal expressiveness can be a key signature in detecting
the intent of a query. Given two lexically identical queries,
lexical features will provide identical representations, but the
speech signal retains information on how each query has been
expressed and can thus be used to help identify the most ap-
propriate intent. Speech production is a complex cognitive,
behavioral, and motor process, where a subtle physiological
and cognitive variation due to expression variation can lead
to a significant change in the affective state, resulting in no-
ticeable acoustic variations. Such changes affect the speech
production mechanism, and can be detected through prosodic,
articulatory, and acoustic speech features [8] [9]. A detailed
overview of prosodic, articulatory, and acoustic features for de-
tecting speaker state is discussed in [10] [11].

In this work, we investigate whether we can detect the level
of expression in a query (in line with human perception). In
such a task, we compare how does linguistic (i.e. textual) infor-
mation perform with respect to the paralinguistic information.
Additionally, we seek to answer the following:

• How does perceived emotion (in the form of valence and
arousal) correlate with expressiveness?

• Can better acoustic features help to generate better
acoustic and emotion embeddings?

• Can articulatory information help in detecting emotional
variations in speech?

Expression in the context of this paper is defined as vocal ex-
pression as perceived by multiple human graders, where inter-
grader agreement tended to vary, but not significantly so.



The outline of the paper is as follows: section (2) will
present the dataset used in our study, (3) will introduce the
speech cues investigated in this paper and the acoustic mod-
eling techniques explored, and (4) we will present the results
followed by conclusion in (5).

2. Data
We have collected approximately 100 hours of US English
speech material and their associated automatically generated
speech transcriptions. The data had neither any speaker level
information nor any contextual information: every query was
independent of every other. Hence the task we explored was:
speaker independent and context-free.

The collected speech material was annotated by human
graders. After listening to the speech material, the graders an-
swered several questions focusing on the paralinguistic infor-
mation in speech. Each request was graded by four different
graders. In total, 35 graders participated in this task. Graders
were trained over a period of 2 to 3 weeks and they were se-
lected based on their performance over a set of mini-grading
tests before labeling the data used in this study, to reduce noise
in the grades and ensure consistent grading. The grading ques-
tions were based on similar tasks previously reported in the
literature [12] and internal discussions. The resulting graded
dataset contained information on the following attributes:

1. A query’s vocal expression with respect to the type of
intent, i.e., asking for a resource, an accidental trigger,
or a prank or other humor attempt. The graders voted if
the query expressed the intent clearly, by selecting one of
the three possible options: ”Yes”, ”No” and ”Not sure”.

2. Perceived primitive emotion (Arousal and Valence) on a
three-level Likert scale.

After grading, the data was filtered to remove cases where
all four graders were Not Sure in their decision, which resulted
in 70 hours of data that was used in our experiments. The final
grade for a query was an average of the individual grades by the
graders (where the grades were converted to real integers).

In this work, we also investigated how emotion embedding
can help to detect vocal expressions, hence we explored build-
ing primitive emotion detection models from speech using the
valence and arousal scores from the graded data. The emotion
labels from the graded data were averaged across graders and
then scaled to have a dynamic range of 1 to 7: (Arousal: 1-very
calm, 7-very active; Valence: 1-very negative, 7-very positive).

The graded data was split into 4 groups: (a) pre-training set,
60 hours data; (b) balanced training set (uniform distribution
across classes), 30 hours of data; (c) development set (held-out
4 hours of data) and (d) and evaluation set (held-out 3 hours of
data).

3. Data Analysis and metric
Data grading provided some interesting insights, where the
graders agreed more on labeling a query as not-expressive than
expressive. Figure 1 shows the distribution of their decisions.
The expressive and not-expressive cases are those where two or
more graders have agreed strongly toward that decision. When
graders labeled primitive emotions, such as perceived valence
and arousal levels, the emotion grades tended to have distinct
distribution for expressive versus not-expressive queries, as ex-
pected, which is shown in figures 2 and 3. Indicating that prim-
itive emotions can assist in detecting the level of expression in

a query. The metrics used to measure results on expression
detection in this paper are the following (1) equal error rate
(EER); (2) f-score; and (3) weighted accuracy (WA) and (4)
Unweighted Accuracy (UWA).

Figure 1: Distribution of grader agreement on an utterance be-
ing expressive: Yes [two or more selected ”Yes”]; Mild-Yes
[only one selected ”Yes” and two or more are ”Not Sure”],
Mild-No [two or more selected ”Not Sure” and the rest selected
”No”] and No [two or more selected ”No”].

Figure 2: Distribution of perceived Arousal for expressive ver-
sus not-expressive cases.

Figure 3: Distribution of perceived Valence for expressive ver-
sus not-expressive cases.

4. Acoustic Features
We investigated several acoustic features to parameterize
speech. The baseline feature is the 20 dimensional mel-
frequency cepstral coefficients (MFCCs). We explored gam-
matone cepstral coefficients (GCCs) and modulation features
(modulation cepstral coefficients (NMCC) [13]), both of which
consisted of 20 cepstral features. In addition, we explored
a 3-dimensional pitch, pitch-delta and voicing feature (F0-V).
The 3-dimensional F0-V feature was combined with 20 dimen-



Figure 4: Mid-sagittal view of the vocal tract constriction vari-
ables (TVs) [18].

Figure 5: Correlation of the TVs with valence scores.

sional cepstral features (MFCC, GFCC and NMCC) to gener-
ate 23 dimensional features (MFCC+F0-V, GFCC+F0-V and
NMCC+F0-V).

We investigated articulatory features in the form of vocal
tract constriction variables (TVs) as detailed in [13]. Detecting
valence from speech has been relatively difficult compared to
arousal and dominance [14]. Visual and lexical features have
been found to be quite useful for improving the performance
of valence detection [15]. It has been hypothesized [16] that
articulatory information can assist in detecting valence while
using speech-only information. This study investigates if va-
lence detection can be improved with the use of articulatory in-
formation. The articulatory information (in this case the TVs)
in our study defines the degree and location of constriction
actions within the human vocal tract as speech is produced.
The TVs have eight dimensions: GLO: glottal opening/closing;
VEL: velic opening/closing; LP: lip protrusion; LA: lip aper-
ture; TTCL: tongue tip constriction location; TTCD: tongue tip
constriction degree, TBCL: tongue body constriction location
and TBCD: tongue body constriction degrees [13][17]. A mid-
sagittal view of the vocal tract and its associated TVs are shown
in Figure 4 [18]. We analyzed the correlation of the TV tra-
jectory variation with valence and observed positive correlation
across the different TV dimensions as shown in Figure 5, justi-
fying the relevance of using TVs for primitive emotion (valence
and arousal) detection from speech.

To be able to use TVs in our study, we need to obtain such
information from the speech signal, hence we trained an LSTM-
based speech-inversion system which takes in spliced (window
of 5 frames on both sides of the current frame) 39 dimensional
MFCC feature as input and maps that to the 8 TV trajectories.
To train the model, we have used the 400 hour articulatory TTS
generated data specified in [13].

5. Acoustic Model
We used the graded data to train single-layer long-short term
memory (LSTM) neural network based acoustic models, with

Figure 6: Embedding fusion for expression detection.

128 neurons in the recurrent and the embedding layers. The
models were tuned using a held-out dev set. The models were
trained using cross-entropy loss, with a mini-batch size of 200,
the Adam optimizer, and a momentum of 0.9. Given the imbal-
ance of classes (as evident in Figure 1), the training data was
grouped into two: (1) pre-training data, consisting of all the
graded data and (2) fine-tuning data, a balanced subgroup of the
graded data, where each class was equally likely. The learning
rate used during pre-training and fine-tuning was 0.0001 and
0.01 respectively. In addition to using LSTM models for di-
rectly detecting expression from speech, we also investigated
training emotion embedding networks for valence and arousal.
The recurrent and embedding layers of the LSTM network con-
sisted of 64 neurons. The models were trained using mean-
squared error loss, with a mini-batch size of 300, using Adam
optimizer, and a momentum of 0.9, with a learning rate of 0.01.

For all the model training steps, early stopping was al-
lowed based on cross-validation error increase. If the cross-
validation step increased for five consecutive steps, the training
step backed-off to the previous best model and restarted train-
ing with a 10% reduced learning rate. If such back-off strat-
egy failed, then training stopped, returning the most recent best
model, based on training and cross-validation error. Finally, a
single hidden layer feed-forward neural network with 128 neu-
rons (shown in Figure 6) was used to take the combination of
the acoustic embedding and emotion embedding as input and
generate the expression scores. This network was trained with
the same training and cross-validation list as was used to train
the LSTM models.

6. Results
We investigated text-based models for the given task, where
bag-of-words (BoW) features were used to train a multi-layered
neural network (NN). We also used a random model that gener-
ated random outputs and the resulting scores are shown in Table
1. Both the number of hidden layers and number of neurons in
each layer were optimized given a held-out validation set. The
BoW feature transforms were learned from the speech transcrip-
tions of the 60-hour pre-training data, and the neural net model
was trained using BoW features obtained from the 30-hour bal-
anced data. Additionally, an MFCC feature based LSTM model
was trained as a baseline acoustic model and the results from
the text-only and audio-only models are shown in Table 1. The
baseline acoustic model (MFCC-LSTM) performed better than
the text-based model (BoW-NN), by demonstrating a signifi-
cantly lower EER and higher WA, with a confidence interval of
100%. Table 1 clearly shows the weakness of the text-based
system which performs almost at chance level, where WA was
close to 50%. This is because two queries may have the exact
same text, but their expression can be quite different, indicating



Table 1: Equal error rate (EER) and weighted accuracy (WA)
from a random model, text-based and audio-based models

Feature Model EER WA(%)

Random - 50.74 49.69
BoW DNN 47.46 52.79
MFCC LSTM 29.05 65.34

Table 2: EER, WA and, F-score from different acoustic features
as input to the LSTM acoustic model.

Feature EER (%) WA (%) F-score

MFCC 29.05 65.34 0.64
GCC 30.15 68.82 0.66
NMCC 29.18 67.98 0.65
MFCC+F0-V 28.23 73.51 0.66
GCC+F0-V 27.33 73.51 0.67
NMCC+F0-V 27.11 72.03 0.68

that expressive cues are present at the acoustic level but not at
the lexical level. While the general intent of a query may reside
in its surface form, its expression is embedded in its acoustic
signal as paralinguistic information. Next, we investigated the
use of different acoustic features as input to the LSTM acous-
tic model and the results obtained from those experiments are
shown in Table 2. Table 2 shows an interesting trend, where
EER is found to improve when the pitch features (F0-V) are
combined with the cepstral features (MFCC, GCC, and NMCC)
compared to the cepstral features alone. Similar trend is seen in
F-score as well, indicating that pitch and voicing contour is use-
ful in capturing expressive cues in speech.

As noted in Section 4 (Figure 2), emotion related informa-
tion can help discern vocal expression. For example, expressive
queries seem to have a different valence and arousal range than
the non-expressive ones. To investigate whether the emotional
content of a query can help in the given task, we trained an
LSTM model for predicting valence and arousal from speech.
The emotion LSTM model takes in the same set of features as
the expression acoustic models. The results from the emotion
LSTM models are shown in Table 3, where concordance corre-
lation coefficient (CCC) is used as the evaluation metric.

We extracted the embeddings from the MFCC+F0-V and
NMCC+F0-V expression acoustic models and used them as in-
put to a single hidden layer neural network (NN) with 256 neu-
rons, where the targets were the expression scores. Table 2
shows the EER from the acoustic embedding trained NN mod-
els. In addition, we combined the acoustic embeddings (AE)
from models trained with NMCC+F0-V and MFCC+F0-V fea-
tures, and the emotion embeddings (EE) from the model trained
with MFCC+F0-V+TV feature, and the results are shown in Ta-
ble 4. Figure 7 shows the ROC curve from the random, BoW,
AE and embedding fusion (AE+EE and AE2+EE, shown in 3rd
and 4th rows of Table 4, respectively) systems.

Table 4 shows the following: (1) better acoustic features
generated better embedding (NMCC), which in turn helped to
improve performance as compared to other acoustic features
(such as MFCC). (2) The addition of emotion embedding helped
to reduce the EER by 26% relative with respect to the best per-
forming single feature system (NMCC+F0-V). In addition, a
relative reduction of 34% in EER is achieved compared to the
MFCC baseline and an overall 59% relative reduction in EER
is observed compared to the text-only system.

Table 3: Performance of the various Emotion LSTM models w.r.t
concordance correlation coefficient (CCC).

Feature CCC
Valence Arousal

MFCC 0.27 0.64
GCC 0.28 0.67
NMCC 0.26 0.68
MFCC+F0-V 0.37 0.66
MFCC+F0-V+TV 0.40 0.66

Table 4: Performance from using Acoustic Embedding (AE) and
Emotion Embedding (EE) in single layered neural net

Embeddings EER

AE(MFCC+F0-V) 28.31
AE(NMCC+F0-V) 27.26
AE(NMCC+F0-V)
+EE(MFCC+F0-V+TV) 20.01
AE2(NMCC+F0-V, MFCC+F0-V)
+EE(MFCC+F0-V+TV) 18.84

Figure 7: ROC curve from the random, BoW, AE and EE sys-
tems.

7. Conclusions
In this work, we investigated how acoustic and emotion cues can
be used to detect vocal expression in speech. We observed that
(a) primitive emotion can help in determining vocal expression,
(b) articulatory information can help in improving the valence
detection, and (c) robust acoustic features can help in gener-
ating better embedding. We have presented evidence that vo-
cal expression is a useful acoustic attribute that could comple-
ment lexical information, where acoustic based systems demon-
strated a significant error rate reduction compared to text-only
systems. In the future, we plan to investigate attention modeling
to focus on speech only regions which can help to improve the
performance of the given task.
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