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Abstract

Emotion recognition from speech plays a significant role in

adding emotional intelligence to machines and making human-

machine interaction more natural. One of the key challenges

from machine learning standpoint is to extract patterns which

bear maximum correlation with the emotion information en-

coded in this signal while being as insensitive as possible to

other types of information carried by speech. In this paper, we

propose a novel temporal modelling framework for robust emo-

tion classification using bidirectional long short-term memory

network (BLSTM), CNN and Capsule networks. The BLSTM

deals with the temporal dynamics of the speech signal by ef-

fectively representing forward/backward contextual informa-

tion while the CNN along with the dynamic routing of the Cap-

sule net learn temporal clusters which altogether provide a state-

of-the-art technique for classifying the extracted patterns. The

proposed approach was compared with a wide range of archi-

tectures on the FAU-Aibo and RAVDESS corpora and remark-

able gain over state-of-the-art systems were obtained. For FAO-

Aibo and RAVDESS 77.6% and 56.2% accuracy was achieved,

respectively, which is 3% and 14% (absolute) higher than the

best-reported result for the respective tasks.

Index Terms: Speech emotion recognition, representation

learning, BLSTM, CNN, capsule network

1. Introduction

Speech is the most natural way of human communication and

reflects many aspects of us. This turns it into a complicated

signal, encoding a large amount of information that can be cat-

egorised into lingual content, speaker-dependent attributes and

environmental clues. Emotion is among the speaker-related in-

formation and plays an important role in human-human com-

munication. As speech-driven user interfaces become more

common in everyday life, lack of emotional intelligence is be-

coming more evident and adding this dimension to human-

machine interaction is highly desirable.

From pattern recognition viewpoint, speech emotion recog-

nition (SER) requires a front-end which extracts a set of features

that ideally bear maximum correlation with emotion attribute

while having the least sensitivity to other speech aspects. How-

ever, such signal parameterisation through feature engineering

is challenging. In practice, general features such as MFCC, fil-

terbank used along with classifiers such as HMM [1], SVM [2]

and GMM [3] for emotion recognition from speech. In [4],

Schuller et al. introduced a set of features handcrafted for emo-

tion recognition problems. Hybrid models using HMMs and

DBNs (deep belief networks) were also used for SER [5].

Deep neural networks (DNNs) can solve the data represen-

tation problem through learning a series of task-specific trans-

formations. The network layers extract abstract representa-

tions and also filter out the irrelevant information which leads

to a more accurate classification [6, 7] and better generalisa-

tion [8, 9]. Temporal models were also proposed for modelling

sequential data with mid to long-term dependencies [10, 11].

In this paper, we present a novel architecture consisting of

bidirectional long short term-memory (BLSTM), CNN and cap-

sule layers. The BLSTM-CNN and the Capsule net in the pro-

posed network play complementary roles: the former deals with

the sequential nature and the temporal dynamics of the speech

and the later further distils the information and classifies the

extracted representations. The goal is to build a deep temporal

model of utterances through leveraging the information encoded

in the speech dynamics and its sequential nature. The exper-

imental results prove the effectiveness of the proposed hybrid

topology, leading to the state-of-the-art performance on FAU-

Aibo [12–14] and RAVDESS databases [15] in both binary and

8-class emotion classification tasks.

The rest of this paper is organised as follows. In Section 2,

representation learning through RNNs, 1D-CNN and capsule

routing networks are reviewed and discussed. Section 3 ex-

plains the proposed architecture and its advantages. In Section

4 the experimental results are presented along with discussion

and Section 5 concludes the paper.

2. Approaches to Representation Learning

Speech is a sequential data with a high temporal dynamics [16].

The speaker-related properties like emotion are distributed in

the utterance and vary at a slower pace than the lingual con-

tent. To adequately capture such attributes, employed algo-

rithm should be capable of handling sequence properties and

go beyond mere short-term processing techniques. There are

two main approaches in neural networks (NN) to deal with such

sequential dynamics: augmenting the input by stacking the pre-

vious/next frames or using a network with some memory, rep-

resenting the temporal evolution of the system’s internal state.

2.1. Recurrent Neural Networks

In a regular feedforward NN, the temporal information is pro-

vided through the input by stacking neighbouring contextual

frames. Setting the context length is done empirically and is

a task and data-dependent practice [17]. On the other hand, Re-

current Neural Networks (RNN) by utilising the internal state,

keep track of what has happened in the past and consider such

temporal evolution while making a decision at each time step.

One issue with RNNs training is gradient vanishing or ex-

plosion [18] and to overcome that Long short-term memory

(LSTM) [19] architecture was proposed. LSTM is an RNN with

a special memory cell enclosed by three gates (input, forget and

output) which can keep contextual information efficiently as far

as it is required. This makes LSTMs outperform the normal

,
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RNNs in learning mid to long-term dependencies in the sequen-

tial data [20]. Further studies show that as well as the backward

sequential context, the future context can also contribute to a

more effective sequential processing. In this regard, bidirec-

tional RNNs (BRNN) were proposed which consider both for-

ward and backward contextual information [21]. BLSTM [17]

is the combination of both LSTM and BRNNs and has the ad-

vantages of both architectures.

Here, for each time step t, we concatenate the activations of

the unfolded network over the last T − 1 time steps, providing

a matrix of T ×N , where N is number of nodes of the BLSTM

layer and T is the context length (including current frame t). In

our work these BLSTM activations are the first temporal repre-

sentation in the hierarchy.

2.2. 1D-Convolutional Capsules

CNNs have been successfully applied to various speech-related

tasks such as ASR [22, 23] and emotion classification [9, 24].

CNN can model patterns with high robustness to variations and

distortions [25]. A key component of our work is that we have

applied 1D convolution to each of the temporal activation states

of BLSTM for learning different abstract temporal representa-

tions. The output matrices of these convolution units are con-

catenated to form a capsule and a squashing function is applied

to get vector representation for each capsule. A capsule is a

group of neurons. The output of the capsule j, ot
j , is

o
t
j = g(sj), (1)

where sj is the input (concatenated 1D-Conv output) to the cap-

sule j and g(.) is a squashing function. The intuition behind

squashing is to shrink short vectors (less likely ones) to zero and

long vectors (more likely ones) to nearly (below) 1. In Sabour

et. al [26], g(·) is defined as follows

g(x) =
‖x‖2

1+ ‖x‖2
x

‖x‖
. (2)

In this paper, each 1D-Conv capsule consists of a group of

neurons which collectively learn specific temporal entities pre-

sented by the BLSTM layer (shown in Fig 2). Contrary to the

normal units which return a scalar, a capsule outputs a vector

whose length is proportional with the likelihood of the entity

presence, and direction represents the instantiation parameters.

2.3. Capsule Routing Network

After max-pooling the feature maps (outputs of the filters) in

a CNN, an approximately translation invariant representation is

achieved at the expense of losing orientational and relative spa-

tial information about the parts or entities in an image [26]. For

classification tasks where the input should be mapped into a

label, this information loss may not pose a serious issue. How-

ever, when some segmentation is required, the (approximately)

translation invariance rendered by max-pool becomes problem-

atic due to the information loss it brings about. Sabour et al. [26]

proposed a novel technique called Routing by agreement which

yields a translation equivariance instead of the translation in-

variance in the CNNs. It deals with the problem mentioned

above and better preserves the hierarchical relationships be-

tween lower and higher level features.

In the routing layer, the previous layer capsules try to esti-

mate the output of the next layer. The capsules in lower layer

predicts the output of the capsule n in the next layer. The input

of the capsule n, sn, is a weighted sum of such predictions

sn =
∑

m

cmnp̂n|m, (3)

where p̂n|m is the prediction of capsule m (in the lower level)

about the output of capsule n and coefficients cmn are weights.

The weights are computed by a softmax function operating

on bmn coefficients which are learned through routing-by-

agreement algorithm [26].

The agreement of the predicted output and actual output in-

dicates the correctness of the prediction of the capsule m in the

lower level about the capsule n’s output in the higher level in

the hierarchy, namely amn. It determines how the lower and

higher level features should be linked together which is in con-

trast to the conventional networks where the higher level feature

are merely a weighted sum of the lower level features. The pre-

diction about capsule n is computed as a product of the transfor-

mation matrix Wmn and the output of the preceding layer pm.

Then, the agreement, amn, is computed using an inner product

p̂n|m = Wmnpm, amn = pn · p̂n|m. (4)

This inner product is added to bmn (prior probablities initialised

by zero) such as bmn = bmn + amn. The transformation

matrices, Wmn, are learned by backpropagation.

If capsule m (in the lower level) contains an instantiation of

an entity represented by capsule n (in the higher level), the rout-

ing process makes the link between m and n capsules stronger

and vice verse. Hence, the impact of the features from the

mth capsule on the nth capsule is dynamically adjusted. Max-

pooling is a static form of routing where only the most active

unit in the pool is routed to the higher level, without considering

the dynamic of the agreement between the low and high-level

features in the hierarchy.

2.4. Supervector Extraction Using Generative Models

For supervector extraction in building baseline systems, we

have used the method proposed in [3]. In this technique, first

a GMM with M components is estimated for each class. Then,

the posterior probabilities of all the components of GMMs are

computed for each frame, averaged over all the utterance frames

and finally stacked into a supervector.

The length of the supervector is M × C where C is the

number of classes. For UBMGMM [27] and iVector [28] the

supervector length is M × D where D indicates the length of

the raw feature vectors. For tasks where the number of classes is

inherently small such as emotion recognition, C is notably less

than D. As a result; this approach leads to a more compact rep-

resentation which facilitates faster and more efficient learning.

For more details about the advantages of this approach, please

refer to [3]. eGeMAPS [29] have also been used to extract su-

pervector for comparison purposes.

3. Proposed DNN Architecture

The general architecture of the proposed framework is illus-

trated in Fig. 1. In this architecture, BLSTM, Conv-Capsule

and the Capsule routing layer are playing complementary roles.

BLSTM is used to deal with the sequential nature of the speech

and its temporal dynamic. The Conv-Capsule model learns

more abstract and richer representations of those temporal fea-

tures. Finally, the capsule routing layer further distils the ex-

tracted patterns and maps them to a categorical distribution.
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Figure 1: The proposed architecture consisting bi-directional

long-short term memory, 1D convolution and routing network.

The Capsule net, in comparison with BLSTM, has a lower

capability in handling and processing the forward/backward

contextual information encoded in a sequential data like speech.

On the other hand, BLSTM is not as powerful as the Capsule

net in dealing with the static patterns. For example, it is not

translation invariant. The order, i.e. using 1D convolution cap-

sules on top of the BLSTM is justifiable as follows: first, tem-

poral features enriched by contextual information, is extracted

through BLSTM and then more abstract information distillation

is carried out through the capsules and routing process. We pre-

serve all the temporal cell state sequences using 1D convolution.

It was noticed that using 2D convolution distorts the temporal

alignment. As such, each part is used in a task which it best

fits and the other component compensates for its shortcoming.

This makes the structure super-additive and improves the over-

all performance as verified by the experiments.

Getting into more details, the overall network is comprised

of two BLSTM layers, 1D conv-capsule layer consisting of cap-

sules and a capsule routing layer. Input layer consisted of 70

nodes (length of the feature vector), and each BLSTM hidden

layer (M in Fig. 1) contained 256 units.

The next layer consists of four 1D-CNN for two class cat-

egorisation task and 10 1D-CNN for eight class categorisation

task. Each of these CNN has 90 filters and operates on the same

receptive field of BLSTM temporal activation. The output fea-

ture maps are concatenated to form a capsule. The output of a

capsule is squashed (Eqs. 1, 2) for getting the vector represen-

tation of the feature learned by that capsule.

The routing capsule layer is connected to the previous layer

through the transformation matrices which is similar to a fully-

connected layer in the conventional NNs, except for replacing

the scalar-to-scalar with a vector-to-vector transform. The num-

ber of capsules in this layer equals the number of classes, and

each output layer capsule is connected to all the capsules in the

previous layer. The previous layer capsules compute the pre-

diction of the output of capsules in the next layer (Eq. 4). The

agreement coefficient is achieved by measuring the distance be-

tween the predicted output and the actual output (Eq. 4). Fi-

nally, the output of these capsules is computed using Eq. 3. The

output layer capsules compute the posterior probabilities. The

transformation matrices are learned by back-propagation.
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Figure 2: Scatter plot of the four conv-capsule (left) and ten

conv-capsule (right) outputs for RAVDESS after dimensionality

reduction via t-SNE. Each color represents one cluster.

Table 1: UA(%) on FAU speaker independent scenario

(Mont/Ohm as train/test) and vice versa

Method Train Test
2-class
UA(%)

8-class
UA(%)

Supervector+SVM
Mont
Ohm

Ohm
Mont

62.8
56.5

29.8
36.3

Supervector+CNN
Mont
Ohm

Ohm
Mont

68.0
70.8

53.6
58.7

eGeMAPS+CNN
Mont
Ohm

Ohm
Mont

61.7
68.2

42.3
55.7

(Feature⋆) + Capsule
Mont
Ohm

Ohm
Mont

70.5
71.3

53.3
59.0

(Feature⋆)+BLSTM
Mont
Ohm

Ohm
Mont

71.7
72.2

53.4
58.7

(Feature
⋆) +

Proposed Framework
Mont
Ohm

Ohm
Mont

74.5
75.3

55.3
61.8

(Feature⋆)+
Capsule + BLSTM

Mont
Ohm

Ohm
Mont

70.4
71.2

53.8
58.6

(Feature⋆)+
BLSTM + CNN

Mont
Ohm

Ohm
Mont

72.1
72.9

54.4
58.8

4. Experimental Results
4.1. Features

The eGeMAPS [29] and supervector [3] features were used in

the baseline systems, the default parameters reported in their

respective publications were applied. We have also used the

log-spectrogram feature with 128 filterbanks (FB128). The

feature vector consists of the fundamental frequency (F0), 23-

dimensional MFCC and log-energy augmented by delta and

delta-delta, denoted by Feature⋆. To further enrich the input

of the DNNs with contextual information, each frame’s fea-

ture vector was appended with the feature vectors of the pre-

ceding/following 45 frames. This paves the way for better cap-

turing the mid to long-term properties of the speech through

processing a context of about 900 ms. Networks were trained

by PyTorch [30] and optimisation was done by Adam [31].

4.2. Setup

FAU-Aibo [12–14] and Ryerson Audio-Visual Database of

Emotional Speech and Song (RAVDESS) databases [32] have

been used. The RAVDESS is an audio-visual database and only

its speech part is utilised here which covers eight acted emo-

tional expressions: neutral, calm, happy, sad, angry, fearful, sur-

prise and disgust while FAU consists of five emotional classes:

anger, emphatic, neutral, positive and rest (other categories).

FAU consists of children speech recordings who were commu-

nicating with Sony’s pet robot Aibo, so the emotions are natural

and spontaneous. FAU consists of two sets, namely Ohm and
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Table 2: UA(%) on RAVDESS speaker independent scenario

Method
2-class
UA(%)

8-class
UA(%)

FB128 + Proposed Framework 66.3 50.1
Feature

⋆ + Proposed Framework 70.4 56.2
COVAREP + LSTM [33] 41.2

Table 3: Performance on RAVDESS (75%/25% for train/test)

Method
2-class
UA(%)

8-class
UA(%)

Supervector+SVM 65.8 36.3

Supervector+CNN 65.9 34.6

eGeMAPS+CNN 71.4 33.0

(Feature⋆) + Capsule 60.3 25.5

(Feature⋆)+BLSTM 74.2 63.9

(Feature
⋆) + Proposed Framework 79.5 69.4

(FB128) + Proposed Framework 73.9 68.1

(Feature⋆)+ Capsule + BLSTM 66.8 35.4

(F0 + MFCC
⋆)+ BLSTM + CNN 74.8 51.3

Mont which cover 55% and 45% of the whole data, respectively,

with totally disjoint speakers.

For training the system, 75% of data (randomly chosen)

were employed, and the remaining 25% were used for testing.

The RAVDESS speaker independent scenario is performed by

using 19 speakers for training and four different speakers for

testing. For FAU corpus, we also followed another approach:

since it consists of two subsets, i.e. Ohm and Mont, one was

used for train and the other one to test. These two sets are dis-

joint in terms of speakers which makes the test condition more

challenging than 75/25% case and provides a better platform for

evaluating the robustness of the system. The downside, how-

ever, is that a lower amount of data becomes available for train-

ing. In the second approach, namely choosing 75/25% for the

train/test, we have run the experiments ten times and reported

the mean. The baseline systems trained with different hyper-

parameters, and the results have been reported for comparison

purposes. No transfer learning mechanism was used and the

classifiers were trained from scratch.

4.3. Results and Discussion

We hypothesized at the beginning of the paper that each 1D

conv-capsule would learn different temporal properties for the

same BLSTM temporal activation. The output of those capsules

are extracted and after dimensionality reduction they are plot-

ted in Fig 2. Each of these capsules learn totally different and

unique temporal features. As can be observed, they form non-

overlapping clusters for both cases of four and ten capsules.

Tables 1-4 show the unweighted accuracy (UA) for bi-

nary (positive vs negative) as well as 5-class (FAU) and 8-

class (RAVDESS) emotion classification tasks. The proposed

approach in comparison with different systems and baselines

leads to a notably better performance. To visualise how well

the proposed network separates classes, we performed a dimen-

sionality reduction using t-SNE [34] on the output layer for

RAVDESS test and train data. Fig. 3 illustrates the network

successfully clusters the representations in the output layer.

The combination of the supervector (as input) with SVM

Figure 3: Scatter plot of the proposed system’s output for

RAVDESS in 2-class task (strong/normal emotion) after dimen-

sionality reduction via t-SNE.

Table 4: FAU (75%/25% for train/test) in binary emotion clas-

sification task.

Method Proposed Framework DBN [35]
Sparse AE+

SVM [35]

UA(%) 77.6 ±0.2% 74.1 71.7

and CNN is shown for FAU corpus in Table 1. SVM (with RBF

basis) is outperformed by most of the DNN-based back-ends.

Comparing the Capsule net with CNN in combination with

BLSTM shows the superiority of the Capsule network which

can be explained considering the advantages of the routing-by-

agreement process over the max-pooling, as explained in Sec-

tion 2.3. It should be mentioned that the training time for the

capsules on our system was noticeably higher than CNN.

As seen in Table 1, the order of the BLSTM and the Cap-

sule nets is also important and using the BLSTM on top of the

Capsule net obviously degrades the performance and leads to a

sub-additive combination. This can be explained based on the

argument put forward in Section 3. Table 2 shows the results for

RAVDESS database in which similar trends can be observed in

terms of the ranking of the different systems.

To the best of our knowledge, the state-of-the-art accuracy

for FAU (2-class) is 74.1% [35]. Latif et al. [35] used deep be-

lief network (DBN) and randomly selected 75% of the data for

training purpose and 25% of the data for testing purpose. To

do a fair comparison, similar to their approach, the data was di-

vided into splits (75/25%) and ran ten times and our result is

the average of ten runs. As seen in Table 4, the proposed hybrid

architecture leads to 77.6% ±0.2% accuracy (standard devia-

tion ±0.2%) for FAU, which is 3.5% (absolute) higher than the

state-of-the-art performance.

The state-of-the-art accuracy for 8-class RAVDESS audio

speech emotion classification is 41.2% [33] while the proposed

system leads to remarkably higher accuracy of 56.2%.

5. Conclusion

In this paper, a hybrid architecture consisting of BLSTM,

1D conv-capsule and capsule routing layers was proposed for

speech emotion recognition. The BLSTM is tasked with han-

dling the temporal dynamic of the speech as a sequential data

and extracting contextually-rich representations through for-

ward/backward processing of the short-term features. The Cap-

sule layers provide a state-of-the-art system for further distill-

ing and processing the patterns extracted by the BLSTM. This

structure results in a hierarchical temporal modelling that facil-

itates information clustering and categorisation. The proposed

architecture was compared with a wide range of alternative net-

works and the state-of-the-art performance was achieved. Ap-

plying this architecture to language and speaker recognition

tasks is recommended for future research.
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