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Abstract

Code-switching is about dealing with alternative languages in
speech or text. It is partially speaker-dependent and domain-
related, so completely explaining the phenomenon by linguis-
tic rules is challenging. Compared to most monolingual tasks,
insufficient data is an issue for code-switching. To mitigate
the issue without expensive human annotation, we proposed
an unsupervised method for code-switching data augmentation.
By utilizing a generative adversarial network, we can gener-
ate intra-sentential code-switching sentences from monolingual
sentences. We applied the proposed method on two corpora, and
the result shows that the generated code-switching sentences
improve the performance of code-switching language models.
Index Terms: code-switching, generative adversarial networks,
data augmentation, language model

1. Introduction

Code-switching (CS) is the practice that two or more languages
are used within a document or a sentence. It is widely observed
in multicultural areas, or countries where official language is
different from native language. For example, Taiwanese tend
to mix English and Taiwanese Hokkien in their text and speech
besides their main language, Mandarin. Solving CS is crucial
to building a general ASR system that can process both mono-
lingual and CS speech [1} 2, [3]. In this paper, we focus on
improving the language models for ASR of intra-sentential CS
speech. Specifically, we only deal with words and phrases that
are code-switched within a sentence.

Computational processing of CS is fundamentally challeng-
ing due to lack of data. Applying linguistic knowledge is a solu-
tion to this [4,[5]. Equivalence Constraint and Functional Head
Constraint are used to build a better CS language model [6,[7,18],
and CS models with syntactic and semantic features are built to
exploit more information [9}[10]]. Because of a large amount of
monolingual data, monolingual language models for host and
guest languages are learned separately, and then combined with
a probabilistic model for switching between the two [11].

Because CS is mostly used in spoken language, the most
practical way of generating data is to label CS speech. How-
ever, manual transcription requires plenty of skilled labor and
hours of tedious work. An alternative way is to generate CS
data from existing monolingual text. Unfortunately, there are
no flawless rules for predicting code-switching points within a
sentence, since each person tends to code-switch in a differ-
ent manner. These years, people try to synthesize more code-
switching text by the models learned from data [[12}[13][14].

Generative models have been used to generate CS sen-
tences [[13]], but previous work uses generative model to gen-
erate the sentences from scratch. Here the generator learns to
modify monolingual sentences into CS sentences. In this way,

the generator can leverage the information from monolingual
sentences.

We propose a novel CS text generation method, by using
generative adversarial networks (GAN) [[15] with reinforcement
learning (RL) [16], to generate CS data from monolingual sen-
tences automatically. With CS data augmented by our method,
it is possible to solve the problem of sparse training data. Our
proposed method has the following benefits:

* We don’t use any labeled data to train the generator.

e The model learns CS rules for data generation implicitly
with the help of discriminator instead of defining hand-
crafted rules.

* We conduct the experiments on two Mandarin-English
code-switching corpora, LectureSS and SEAME, which
have very different characteristics to show that the pro-
posed approach generalizes well in different cases.

The experimental results show that GAN can generate
reasonable code-switching sentences, and the generated code-
switching sentences can be used to improve language modeling.

2. Methodology

The main issue of training code-switching model is lack
of adequate code-switching training sentences because code-
switching mostly occurs in speech or personal messages instead
of in written resources. We think that generating code-switching
sentences from monolingual data may solve the above issue
since we can obtain monolingual text much easier than code-
switching text. In the following examples and discussion, Man-
darin is the host language, and English is the guest language.
Actually, the proposed approach is language independent, so it
is possible to apply on other host-guest language pairs.
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Figure 1: Proposed framework. The generator learns to generate
code-switching sentences from monolingual sentences.

To generate intra-sentential code-switching sentences, we
can randomly select some of the words in the Mandarin sen-
tence and translate them into English. However, this ap-



Table 1: Details for the corpora: LecureSS and SEAME.

LectureSS SEAME
train dev test

# speakers - - - 139 8 8

# total utterances 12657 2634 1500 94055 6115 5908

# Mandarin utterances 4643 964 810 20365 1653 2211

# code-switching utterances 8014 1670 690 50421 3564 3066

# total words 160862 28063 12398 | 964927 65696 57620
# Mandarin words 138409 23308 10871 | 543399 42525 41874
# English words 22453 4755 1527 | 417452 22641 15370

Table 2: Comparison between LectureSS and SEAME.

LectureSS SEAME
# speakers 1 156
Nationality Taiwan Singapore & Malaysia
Domain signal lecture daily, school
ZH:EN words 1:0.16 1:0.7
Cs-rate 20% 25%

proach will generate many unreasonable code-switching sen-
tences. For instance, given the monolingual sentence “#& & 4>
#... ” (I will introduce ...), replacing the word “#&.” with “T”
does not generate a reasonable sentence because few speakers
would code-switch in this way. Nevertheless, there are no per-
fect rules to predict which word or phrase in a sentence should
be code-switched or not. Inspired by GAN, we propose to learn
a conditional generator for code-switching sentences, so it can
transform a monolingual sentence into a code-switching sen-
tence.

Discriminator. The discriminator D takes a sentence as
input, and outputs a scalar between 0 and 1. The output scalar
indicates that the input sentence is generated by the generator G
or from the given code-switching training sentence. For a well-
trained perfect discriminator, the output is zero when the sen-
tence is generated by generator G, and the output is one when
the sentence is sampled from the training data set.

Generator. The generator GG takes a monolingual (Chi-
nese) word sequence x = {x1, T2, ..., oy} as input, where N
is the length of aﬂ The output of G is a sequence of values
s = {s1,82,...,SN}. Sn is a scalar between 0 and 1 corre-
sponding to input word z,,. Each scalar s,, represents whether
it is proper to replace x,, with its translated counterpart. s, is
considered as a probability, and a binary value is sampled from
it. If the sampled value is 1, the word in Mandarin will be trans-
lated into English. By contrast, if O is sampled, the input word
will remain the same. A code-switching sentence g is thus gen-
erated from G. The generator proposed here only learns which
word in Mandarin can be replaced with English. It is possible to
have a generator which directly generates code-switching word
sequence. However, learning which word can be replaced is
easier than learning to generate the words in another language
directly.

Training of Discriminator. D is learned by minimizing
L p below,

Lp = —(Ey~p,,[l0gD(y)]+Eenp,, g~c(2) [log(1=D(H))]).

M
In the first term of (T)), the code-switching sentence y is sampled
from the training data D, and the discriminator D learns to as-

I'As typical conditional GAN, the generator G also takes a noise z
sampled from Gaussian as input. We ignore z in the following formu-
lation for simplicity.

sign a larger score D(y) to y. In the second term, a monolingual
sentence x is sampled from a data set D, and G transforms x
into a code-switching sentence . D learns to assign a smaller
score D(7) to §.

Training of Generator. The parameters in GG are learned
from the following loss function L¢.

@

With ), G learns to generate § that can obtain large D(§). Due
to the output of discriminator is discrete, the model is updated
by the REINFORCE algorithm [[17,118,119].

The discriminator D and generator G are trained iteratively
as typical GAN.

Lo =—E,up., juc logD(D)]-

3. Experimental setup
3.1. Corpora
In this work, we utilized two data sets for the experiments: Lec-
tureSS and SEAME corpus [20]. The detailed statistics of these
corpora are listed in Table[T] Additionally, we draw a compar-
ison between them in Table[2l CS-rate in Table[2is defined as
below,
# English words in CS utterances

CS-rate = -
# total words in CS utterances

3

LectureSS is a lecture speech corpus recorded by one Tai-
wanese instructor at National Taiwan University in 2006. The
content of the recording is “Signal and System” (SS) course.
It is spontaneous speech with highly imbalanced Mandarin-
English code-switching characteristics. Mandarin is the host
language and English is the guest language. Most English
words in this corpus are domain-specific terminologies.

South East Asia Mandarin-English (SEAME) corpus is
a conversational speech corpus recorded by Singapore and
Malaysia speakers with almost balanced gender in Nanyang
Technological University and Universities Sains Malaysia.
There are two speaking types in the speech: conversational and
interview conditions, and the content are related to daily life,
school, and so on. It is also Mandarin-English code-switching
while the amount of Chinese (ZH) words and English (EN)
words is about equal. Not only proper nouns but also conjunc-
tions may be used in English in this corpus. Some sentences in
SEAME are completely in English, while it does not happen in
NTU lecture. Nevertheless, the cs-rate of LectureSS is close to
the cs-rate of SEAME.

Before using these datasets, we cleaned them first. Lec-
tureSS comprises of “Zhuyin fuhao”, mathematical symbols
and English alphabet which cannot be translated into English
words or Chinese words. In addition, SEAME contains non-
speech labels, unknown words labels, incomplete words and
foreign words. We removed these words directly if the seman-
tics of the sentences would not be influenced too much; other-
wise, we ignored the utterances in the experiments.



Table 3: Code-switching point (CSP) prediction on manually labeled sentences.

[ Precision  Recall

F-measure | BLEU-1 | WER(%)

EN WER ZH WER

LectureSS

7ZH 0 0 0 0.76 20.56 100 0

EN 0.21 1 0.35 0.20 102.1 0 128.5
random 0.17 0.16 0.16 0.62 39.20 88.14 26.54
noun 0.55 0.44 0.22 0.75 17.06 54.02 10.21
proposed 0.52 0.42 0.46 0.78 22.82 54.24 14.69
proposed+pos 0.52 0.55 0.53 0.80 21.08 39.83 16.23

SEAME

ZH 0 0 0 0.65 33.51 100 0

EN 0.3 1 0.46 0.01 80.35 0 117.3
random 0.26 0.23 0.24 0.47 47.02 76.50 33.07
noun 0.61 0.19 0.29 0.49 45.44 93.99 22.48
proposed 0.55 0.35 0.43 0.58 30.00 61.20 15.25
proposed+pos 0.51 0.47 0.49 0.52 33.33 48.63 26.10

3.2. Model Setup

The inputs of both the discriminator and the generator are word
sequences. There are two ways to represent a word. In the first
approach, each word is first represented by one-hot encoding,
and transforms into an embedding by an embedding layer. We
set 8200 and 12000 vocabulary size for LectureSS and SEAME
individually, and 150 as the dimension for word embedding.
In the second approach, we also consider the part-of-speech
(POS) tag for each word. We used Jiebﬂ an Open Source Chi-
nese segmentation application in Python language, as our POS
tagger. Only Chinese words are tagged and English words are
tagged as “eng.” Each POS tag corresponds to a 64-dim one-hot
encoding, and it is transformed into 20-dim by an embedding
layer. The embedding of words and POS tags are concatenated.
The embedding layer is jointly trained with the whole model,
and Chinese and English word embedding are trained together.

The generator G is made up of embedding layer, one bidi-
rectional long short-term memory (BLSTM) [21] layer, one
fully connected (FC) layer. It outputs one value with sigmoid
for each time step to determine whether this word will be trans-
lated into English. Gaussian noise is 10-dim vector concate-
nated with the output of BLSTM. The parameter of G is updated
by policy gradient with the output of D as reward. Translator is
merely a mapping table which contains a list of Chinese vocab-
ulary with each comparing English word translated by Google
translator.

The discriminator D shares the same embedding layer and
BLSTM with G. However, it is updated only when G is training
and fixed when D is training. The output of BLSTM is passed
into a FC layer with dropout rate 0.3. It ends in a one-dimension
vector with sigmoid.

The whole optimization process is based on Adam opti-
mizer [22] and we train 100 epochs for all experiments. The
input data of G is all Chinese training sentences, and D is
trained by all code-switching sentences in the training set and
fake code-switching sentences generated by G in respective cor-
pora.

4. Results

We evaluate our proposed method in three aspects: code-
switching point (CSP) prediction, quality of generated text, and
performance of language modeling with augmented text.

2Jieba toolkit from: https://github.com/fxsjy/jieba

4.1. Code-switching Point Prediction

We selected 50 code-switching sentences y in testing set as
ground truth, and manually translated them into fully Chinese
sentences x. The generator then generates code-switching sen-
tences g conditioned on x. We consider the positions of English
words in y as CSPs that we want to detect, and use precision,
recall and F-measure to evaluate the accuracy of detected CSPs
in ¢. Additionally, we also apply BLEU score [23|] and word
error rate (WER) in (@) to evaluate g,

>, Edit Distance(y;, ¥:)

Word Error Rate =
# total words

; “

where 4 indicates the i*" selected code-switching sentences.

The proposed approach is compared with four baselines:
(1) ZH: fully Chinese sentences, that is, § = . (2) EN: fully
English sentences. (3) random: words are randomly translated
into English. The translation probability for each word is the
same as the cs-rate of the corpus considered. (4) noun: translate
all words that are tagged as nouns (common nouns and proper
nouns) [24]] by POS tagger into English.

According to Table 3] we observe that ZH can have good
performance in BLEU score and total WER. This is attributed
to the fact that Chinese words occur more frequently than En-
glish words in code-switching sentences in both corpora. Ran-
dom gets poor performance because people don’t code-switch
arbitrarily. Noun has high precision owing to high exactness,
but it does not predict CSPs other than noun. Our method ob-
tains better recall, F-measure, BLEU-1 and English WER than
noun on all the corpora because it detects not only nouns but
other CSPs like conjunctions, discourse particles, filled pauses,
and so on.

4.2. Generated Text Quality

Next, we demonstrate the quality of our generated text by val-
idating them with language model trained on training text. We
calculate the perplexity (PPL) of our generated text.

Two types of language models were used to evaluate our
results: n-gram model [25] and neural language model [26].
N-gram language model is a word-level tri-gram with Kneser-
Ney (KN) smoothing [27] trained by SRILM [28]. Recurrent
neural networks based language model (RNNLM) is a two-
layer character-level LSTM [29]] language model. Because the
two corpora have different scales of training data, we used 32-
dimensional LSTM for LectureSS and 64-dimensional LSTM
for SEAME. We used Adam optimizer with initial learning rate



Table 4: Code-switching examples from different methods.

Ground Truth | Causality 328 4% 3f 38 # 38% #& & output at-any-time 2 depend-on input

Input PR 28 & 3F @ 6 mZ 18 & Ik EEENHE R RRA A
(Causality, this is also what you have read, that means what I output at any time only depends on input)
Random M this &2 % 3@ 8 A 18 & output £ EFFH X BURS B
Noun Causality 2 /8 &.& 3% & 8 %A 18 & B EFEFFHE X BUEAS input
Proposed Causality this also 7% PTread 3 89 3% 18 & output ZEFEFF R BUEA WA
Proposed+pos | Causality 518 4 F 2% i@ 89 %02 48 & output at-any-time X depend-on % A

Table 5: Quality of generated code-switching text from testing text
evaluated by PPL on n-gram LM and neural-based LM (RNNLM).

[ random noun [ proposed  proposed+pos
LectureSS
n-gram 1022.95 337.713 | 330.028 400.275
RNNLM 82.292 75.515 82.802 74.287
SEAME
n-gram 177.039 154.28 159.103 145.3
RNNLM 79.338 84.081 78.335 69.345

0.5 to optimize the network, and 0.7 dropout is also applied to
avoid over-fitting.

We used random, noun and the proposed approaches to gen-
erate some sentences to evaluate text quality. These sentences
are generated from all the fully Chinese sentences in the test-
ing set (810 sentences for LectureSS and 2211 sentences for
SEAME as shown in Table[T). The results are shown in Table[3]
In the result of both language models, we observe that the per-
formance of our methods with POS tagging (proposed+pos) is
far better than random on both corpora. It shows that our model
has the capability to transform a Chinese sentence into a code-
switching sentence with the similar pattern as the training data.

Table 6: PPL of neural based language model (RNNLM) trained on
code-switching training text and data augmented from Chinese train-
ing text. The last +pos column indicates considering POS features in
proposed method.

[ [ tain | random  noun [ proposed  +pos

LectureSS | dev | 110.35 107.28 105.37 109.58 103.37
test | 73.394 | 71.779  70.038 71.974 69.185

SEAME dev | 75.295 | 75307 @ 75.307 74.474 75.119
test | 86.088 | 83.873 85.366 83.819 84.358

4.3. Language Modeling

To see whether the data augmentation methods help language
modeling, we trained RNNLM which is introduced in Sec-
tion[4.2]on training data, and evaluated them on the same set of
development data and testing data. We do not show the results
of n-gram-based LM here because its performance is not com-
parable with RNNLM as shown in Table 5] Lower perplexity
represents better performance on language modeling. We form
the augmented training set by combining the generated code-
switching sentences with the original training set. The gener-
ated code-switching sentences are from the Chinese sentences
in original training set (4643 sentences in LectureSS and 20365
sentences in SEAME as shown in Table[T).

Table [6] shows our experimental results. The frain column
in the table represents the perplexity of language model without
the augmented code-switching sentences, which is the baseline
of the experiment. As shown in this table, random surpasses the

baseline on both LectureSS and SEAME testing set. It shows
that augmented code-switching text helps language modeling
even if the CSPs are randomly selected. Noun improves the
results only on LectureSS. This may be due to the fact that Lec-
tureSS contains lots of CSPs on domain-specific noun, while
SEAME has more complicated CSPs.

Proposed+pos performs the best on LectureSS, while pro-
posed performs the best on SEAM It indicates that POS fea-
tures help generator generate more useful code-switching sen-
tences on LectureSS, but not SEAME. This is because in Lec-
tureSS domain-specific terminologies which tend to be code-
switched into English are nouns. Meanwhile, SEAME comes
from daily life conversation where CSPs are not focused on
nouns, resulting in better performance without POS informa-
tion. Based on Table [§] we demonstrated that the augmented
data automatically generated by our method helps language
modeling on CS text, and by adding POS features to generator
input, our generated data further improves RNNLM on some of
the data domains.

4.4. Examples

Some generated code-switching examples are demonstrated in
Table ] The first row is the original code-switching sen-
tence (ground truth). We translated it into fully Chinese (in-
put). Then, we compared the generated results to random and
noun. The rule-based approach is accurate, but cannot find
out all CSPs. The proposed method with POS tagging can
find out more CSPs. More examples are in the following link:
http://goo.gl/KdBYSy. The examples show that the pro-
posed approach usually generates reasonable code-switching
sentences. However, it also generates some terrible sentences.
We found that most of them stem from bad translation from
Chinese to English.

5. Conclusion

In this work, we try to generate code-switching sentences from
monolingual sentences by GAN. The generator can learn to
predict CSPs to a great degree without any linguistic knowl-
edge. Moreover, our generated code-switching sentences are
better than random generation and rule-based generation. Last
but not least, the augmented data by our methods improves
RNNLM. For the future work, there is still room for improve-
ment in the translator in this work since wrong translation may
lead to terrible generated code-switching sentences. We will
further analyze the generator to learn more mechanism about
code-switching.

3We notice that the influence of POS tags in Table E] and Table
are different. However, we believe the results in Table[§]is more crucial
because it is the goal of this task. In Table[5] even the model decides
not to code-switch any word in the input sentences, it may still obtains
reasonable number, but this model would not be very helpful in Table@
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