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Abstract
Recently, the effectiveness of text-to-speech (TTS) systems
combined with neural vocoders to generate high-fidelity speech
has been shown. However, collecting the required training data
and building these advanced systems from scratch are time and
resource consuming. An economical approach is to develop a
neural vocoder to enhance the speech generated by existing or
low-cost TTS systems. Nonetheless, this approach usually suf-
fers from two issues: 1) temporal mismatches between TTS and
natural waveforms and 2) acoustic mismatches between train-
ing and testing data. To address these issues, we adopt a cyclic
voice conversion (VC) model to generate temporally matched
pseudo-VC data for training and acoustically matched enhanced
data for testing the neural vocoders. Because of the general-
ity, this framework can be applied to arbitrary TTS systems and
neural vocoders. In this paper, we apply the proposed method
with a state-of-the-art WaveNet vocoder for two different basic
TTS systems, and both objective and subjective experimental
results confirm the effectiveness of the proposed framework.
Index Terms: temporal mismatch, acoustic mismatch, cycle-
consistent, voice conversion, post-filter for text-to-speech

1. Introduction
Text-to-speech (TTS) is a technique to generate speech accord-
ing to the given text. Benefitting from the thriving development
of neural network (NN), the advanced TTS systems with NN-
based waveform generation models [1, 2] achieve very impres-
sive speech fidelity. However, the high quality and quantity re-
quirements of training data, the burden of data pre-processing,
and the time and resource consuming training process make it
difficult to build an advanced TTS system from scratch.

A flexible and economical approach to developing a high-
quality TTS system is to enhance the speech generated by low-
cost or existing TTS systems using an NN-based generation
model such as the WaveNet (WN) [3–6] vocoder. However,
there are two challenges for training and testing the NN-based
vocoder. First, if the NN-based vocoder is trained with nat-
ural acoustic features and waveforms, it will suffer from the
acoustic mismatch problem in the testing stage. The acoustic
mismatch between the synthetic testing acoustic features, which
are extracted from the TTS-generated waveforms, and the natu-
ral training acoustic features causes a significant speech quality
degradation. Secondly, even if training the vocoder with the
synthetic acoustic features and the natural waveforms, the tem-
poral structure mismatch between TTS-generated and natural
waveforms still degrades the performance of the vocoder.

To tackle these problems, a cycle-voice conversion (Cycle-

VC) [7] model is adopted to respectively generate temporally
matched pseudo converted acoustic features for training the
NN-based vocoder and acoustically matched enhanced acoustic
features in the testing stage. Specifically, the Cycle-VC model
includes two conversion paths. The first path converts the syn-
thetic acoustic features to the natural ones, and the second path
is composed of a natural to synthetic conversion model follow-
ing the synthetic to natural conversion model of the first path.
The enhanced and the pseudo converted acoustic features can
be respectively attained from the first and second paths. Be-
cause both the enhanced and the pseudo converted acoustic fea-
tures are converted by the Cycle-VC model, their acoustic mis-
matches are less than that of the synthetic and natural acoustic
features. Since the pseudo converted acoustic features are con-
verted from the natural acoustic features, their temporal struc-
tures are matched to the natural waveforms.

Both objective and subjective evaluations are conducted.
The experimental results show the speech quality degradations
caused by the acoustic and temporal mismatches and the effec-
tiveness of the proposed framework. To sum up, the contribu-
tions of this paper are three folds:

• This paper argues that TTS-generated speech with manu-
ally determined phoneme alignment still has very differ-
ent temporal structures from the related natural speech,
and these temporal mismatches cause significant speech
quality degradations.

• A WN vocoder trained and tested with the proposed
framework does enhance the TTS-generated speech.

• The proposed framework can be generalized for arbitrary
TTS systems and neural generation models.

2. Related work
For TTS systems with an NN-based vocoder, Tacotron2 [1]
has shown an early success by independently training an au-
toregressive (AR) mel-spectral predictor and then training a
WN vocoder with the output of the well-trained mel-spectral
predictor. ClariNet [2] improved it with a non-AR parallel
WN-like [8] vocoder and a jointly training manner. The au-
thors of [9] also proposed a generative adversarial network [10]
(GAN)-based framework to jointly optimize its mel-spectral
predictor and vocoder. However, these methods are exclusive
for specific mel-spectral predictors and difficult to be combined
with arbitrary existing TTS systems.

Furthermore, GAN-based [11] and WN-based [12, 13] de-
noising models also have been proposed to directly operate the
speech enhancement in the waveform domain. However, be-
cause the noisy and clean training data are usually paired, which
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Figure 2: Acoustic and temporal mismatches

have matched temporal structures, directly applying these meth-
ods for TTS post-filters still has a temporal mismatch problem.

In addition, the learning-based post-filters for synthetic
speech enhancement have been explored in different acous-
tic feature domains and NN-based models [14–18]. An ad-
vanced end-to-end GAN-based postfilter [19, 20] also has been
proposed to directly generate the enhanced waveforms. Al-
though the GAN-based approaches are effective for addressing
the temporal and acoustic mismatches problems, stably training
a GAN-based model is still difficult.

On the other hand, because of the different data length na-
ture of the source and target data in VC, NN-based vocoders
trained or fine-tuned with pseudo converted data have been
proposed. For instance, the intra-speaker VC frameworks,
which can obtain the pseudo converted data for fine-tuning
NN-based vocoders, have been explored with Gaussian mixture
model [21], long short-term memory [22], variational autoen-
coder [23], and cyclic gated recurrent unit (GRU) [7] models.
In this paper, inspired by the VC works combined with the fine-
tuned WN vocoders, the pseudo conversion mechanism is ap-
plied to the TTS post-filtering scenario.

3. Cycle-spectral conversion
As shown in Fig. 1, the Cycle-VC system is composed of
a target-to-source (TtoS) model and a source-to-target (StoT)
model. The conventional VC system usually consists of only a
StoT model, but the Cycle-VC system adopts an additional TtoS
model to advance the speech modeling capability of the StoT
model with the cycle-consistency. Moreover, the self-converted
target features are suitable for training or fine-tuning the NN-
based vocoders. That is, these self-converted target features are
alignment-free to the target waveforms, and their acoustic char-
acteristics are similar to the converted features.
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Figure 3: Cycle-VC training stage
In this paper, a cycle-spectral conversion model is adopted.

Given a source spectral vector X =
[
x>1 , · · · ,x>n

]>
, a tar-

get spectral vector Y =
[
y>1 , · · · ,y>n

]>
, an StoT nonlinear

function f , and a TtoS nonlinear function g, the loss function is
formulated as

argmin
θ,φ

(‖f(X)− Y ‖L1 + ρ‖f(g(Y ))− Y ‖L1), (1)

where θ and φ are the model parameters of the StoT and TtoS
models, respectively. ‖·‖L1 is the L1 norm. ρ is a hyper-
parameter, which is empirically set to 1e−8, to avoid the net-
work being dominated by the self-conversion. The network
structure consists of input convolution neural network (CNN)
layers, AR-GRU blocks, and output CNN layers to convert the
spectral features in a framewise manner.

4. Proposed post-filter for TTS
4.1. Acoustic and temporal mismatches

Because of the data-driven nature, NN-based vocoders are vul-
nerable to unseen testing data [24–26]. Specifically, NN-based
vocoders are usually trained with a pair of natural acoustic fea-
tures and waveforms, but the input acoustic features in the test-
ing stage are predicted from other models as shown in Fig. 2
(a). The acoustic mismatch between training and testing data
causes significant speech quality degradation.

In this paper, we argue that even if NN-based vocoders
are directly trained with a pair of synthetic acoustic features
and natural waveforms as Fig. 2 (b), the temporal mismatch
problem still causes severe quality degradation. Specifically,
although directly training the vocoder with synthetic acoustic
features and natural waveforms can alleviate the acoustic mis-
match problem in the testing stage, the temporal mismatch be-
tween them still markedly degrade the vocoder. Even if the syn-
thetic acoustic features are extracted from manually tuned TTS-
generated speech, which has synchronized phoneme durations,
short pauses, and silence segments to the natural target speech,
there are still some different temporal structures between TTS-
generated and natural waveforms. These temporal mismatches
in the vocoder training stage usually cause severe quality degra-
dations such as mispronunciation.

4.2. Post-filter with cyclical mismatch refinement

The proposed method is composed of a Cycle-VC training, a
vocoder training, and a post-filter testing stages. As shown in
Fig. 3, synthetic acoustic features, which are extracted from
TTS-generated speech, are taken as the source, and natural
acoustic features are taken as the target of the Cycle-VC model.
The StoT model is trained with the paired synthetic and natural
acoustic features, and the TtoS model is trained with the cycle-
consistency.

As the proposed framework shown in Fig. 4, an NN-based
vocoder is trained with a pair of temporally matched natural
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Figure 4: Vocoder training and post-filter testing stages

waveforms and pseudo converted acoustic features, which are
converted from natural acoustic features using the Cycle-VC
model. In the testing stage, the well-trained vocoder gener-
ates the enhanced speech from the enhanced acoustic features,
which are converted from the synthetic testing acoustic feature
using the StoT model. Note that the pseudo converted and en-
hanced acoustic features are supposed to be more acoustically
matched than the natural and synthetic acoustic features because
both of them are converted by the StoT model.

5. Experiments
5.1. Corpus and TTS system

An internal Japanese corpus, which included a female and a
male speakers, with sampling rate 48 kHz was adopted for de-
veloping single-speaker TTS systems. Each speaker had 800
training and 100 testing utterances, and the average length
of utterances was around 4 seconds. WORLD-based acous-
tic features [27], which included 60-dimensional mel-cepstral
feature (mcep), one-dimensional log-scaled fundamental fre-
quency (F0), five-dimensional aperiodicity (ap), and their delta
and delta-delta terms, were adopted for the TTS systems. The
minimum description length was set to 1.0.

Two basic and low-cost TTS systems, Hidden Markov
Model (HMM)-based and deep neural network (DNN)-based
systems, were adopted, and both of them were trained in a
speaker-dependent (SD) fashion using the very limited train-
ing data. Specifically, the HMM-based systems were trained
with the Hidden Semi-Markov Model (HSMM) training script
of HTS (ver. 2.3.2) [28], and the manual phoneme segmen-
tations were adopted to initialize the phoneme HSMMs. The
DNN-based systems were composed of four independent feed-
forward DNNs for respectively predicting the F0, ap, mcep,
and durations. Both systems adopted a maximum likelihood
parameter generation (MLPG) [29]. The manually refined
phoneme segmentations were utilized to generate synthetic
speech, which had the same phoneme durations as the natural
speech, of the entire training and testing sets. Moreover, a tra-
ditional spectral post-filter [28–30], which was included in the
HTS demo, with an enhanced coefficient 1.4 (β = 0.4) was
only applied to the DNN-based TTS system.
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on the MCD plane (post-filter w/ DNN-based TTS)
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5.2. Cycle-VC model and WN vocoder

Both natural and TTS utterances were downsampled to 24 kHz
for SD Cycle-VC models and SD WN vocoders. WORLD-
based acoustic features, which included 45-dimensional mcep,
one-dimensional log-scaled F0 and unvoiced/voiced (U/V ) bi-
nary code, and three-dimensional coded ap, were adopted for
the input of the Cycle-VC models and the auxiliary features for
the WN vocoders. Note that the outputs of the Cycle-VC mod-
els were only the mcep features. The settings of the Cycle-VC
model followed the previous work [7], and the training epoch
was set to 15. Furthermore, several SD WN vocoders were in-
volved in the evaluations to show the effectiveness of the pro-
posed framework for different speakers and systems. The archi-
tecture and training processing of the WN vocoders followed
our previous work [31] with 200,000 iterations.

5.3. Objective evaluations

Figures 5 shows the relationships among natural (N), synthetic
(S), pseudo converted (P), and enhanced (E) mceps of the pro-
posed neural post-filters with DNN-based TTS systems on a
mel-cepstral distortion (MCD) plane. The distance between
any two points represents the average MCD of them. Specifi-
cally, although the TTS and natural speech waveforms have the



Table 1: Comparison of testing WN vocoders

Acoustic features
Training Testing

Natural Natural
DNN-AM Natural Synthetic
HMM-AM Synthetic

DNN-TM Synthetic Synthetic
HMM-TM Synthetic Synthetic

DNN-NPF Pseudo converted Enhanced
HMM-NPF Pseudo converted Enhanced

same contexts and durations, the distance between the natural
and synthetic mceps (MCD(S, N)) is still the longest distance
on the plane, and this result implies the temporal mismatches
of the TTS and natural speech waveforms and the severe mis-
matches of their mceps. The smaller value of MCD(E, P) than
the value of MCD(S, N) indicates that the proposed framework
does alleviate the acoustic mismatches between the training and
testing mceps of NN-based vocoders. The smaller value of
MCD(E, N) than the value of MCD(S, N) also shows the effec-
tiveness of the Cycle-VC model to enhance the synthetic mcep.
Furthermore, Fig. 6 has a similar tendency as Fig. 5, which
shows the generality of the proposed framework even with dif-
ferent TTS systems.

5.4. Subjective evaluations

As shown in Table 1, seven training and testing combinations
of WN vocoders were included in the subjective evaluations.
Specifically, the WN vocoder trained with natural acoustic fea-
tures was tested by natural and DNN/HMM-based synthetic
acoustic features, which were the natural and acoustic mismatch
(AM) scenarios, respectively. The WN vocoders trained and
tested with the DNN/HMM-based synthetic acoustic features
were the temporal mismatch (TM) scenarios. The WN vocoders
respectively trained and tested with DNN/HMM-based pseudo
converted and enhanced acoustic features were the neural post-
filter (NPF) scenarios. The subjective evaluations included the
systems with these seven scenarios and the DNN-based and
HMM-based TTS systems. Note that all systems were trained in
an SD manner, so the total number of systems in the subjective
tests was 18.

For each testing system and scenario, we randomly selected
50 testing utterances to form the subjective set and the total
number of the utterances was 900. Ten subjects were involved
in a preference test and a mean opinion score (MOS) test, and
most of them were native speakers. Each subject evaluated a
part of the subjective set, and each utterance in the subjective
set was at least evaluated by one subject. The final results were
the average scores of the testing speakers.

As shown in Fig. 7, the enhanced utterances, which were
generated by the WN vocoders with the proposed post-filtering
framework, were respectively compared with the utterances suf-
fering the AM and TM problems. The results show the effec-
tiveness of the proposed framework to alleviate the AM and TM
problems and imply the generality of it for different TTS sys-
tems. The results also confirm our assumption that although
the TTS-generated speech has the same phoneme durations as
the natural speech, the different temporal structures still cause
a severe TM problem. Moreover, the AM problem also causes
significant speech quality degradations according to the results,
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so the proposed framework is essential for the post-filter appli-
cation with an NN-based vocoder.

Figure 8 shows the results of the MOS test, where each sub-
ject was asked to give a score (1–5) to evaluate the speech qual-
ity of the given utterance. The higher the socre, the higher the
speech quality. The results show that the proposed post-filter
markedly enhanced the TTS-generated speech, even if a tradi-
tional spectral post-filter was already applied to the DNN-based
TTS. Although there is still a room to improve the speech qual-
ity to attain the same quality as the upper bound, which is the
WN vocoder trained and tested with the natural acoustic fea-
tures, the significant improvements (> 1) of MOSs for both
TTS systems still show the effectiveness of the proposed frame-
work as a post-filter for arbitrary TTS systems.

6. Conclusions
In this paper, the harmful effects of the acoustic and temporal
mismatches for the TTS post-filter with an NN-based vocoder
are explored. The proposed framework adopts the Cycle-VC
framework to get the temporally matched pseudo converted
acoustic features for the training of the NN-based vocoder and
the acoustically matched enhanced acoustic features for the test-
ing of the neural post-filter. Both objective and subjective tests
of different TTS systems and speakers show the generality and
effectiveness of the proposed framework. For future works, we
intend to explore the proposed framework with more different
NN-based vocoders.
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