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Abstract
Deep-learning based noise reduction algorithms have proven
their success especially for non-stationary noises, which makes
it desirable to also use them for embedded devices like hearing
aids (HAs). This, however, is currently not possible with state-
of-the-art methods. They either require a lot of parameters and
computational power and thus are only feasible using modern
CPUs. Or they are not suitable for online processing, which
requires constraints like low-latency by the filter bank and the
algorithm itself.

In this work, we propose a mask-based noise reduction ap-
proach. Using hierarchical recurrent neural networks, we are
able to drastically reduce the number of neurons per layer while
including temporal context via hierarchical connections. This
allows us to optimize our model towards a minimum number of
parameters and floating-point operations (FLOPs), while pre-
serving noise reduction quality compared to previous work. Our
smallest network contains only 5 k parameters, which makes
this algorithm applicable on embedded devices. We evaluate
our model on a mixture of EUROM and a real-world noise
database and report objective metrics on unseen noise.
Index Terms: speech enhancement, noise reduction, recurrent
neural networks, embedded devices

1. Introduction
Noise reduction (NR) aims at reducing unwanted environmen-
tal noise, like street noise, and enhances a superimposed speech
signal. NR is an important feature of modern hearing aids
or hearing assistance devices. Recent contributions to deep-
learning based monaural speech enhancement [1, 2, 3, 4, 5] re-
sult in a huge improvement over conventional noise suppression
approaches [6, 7]. This makes it desirable to incorporate these
approaches into HAs. However, these algorithms employing
deep neural networks have great demand on both memory and
computational power. Furthermore, many algorithms process
the noisy signal in an offline fashion [8, 2, 9, 10, 11] or intro-
duce large delays, which is not viable on HAs. According to
Jeremy et al. [12], the maximum delay of what is typically ac-
ceptable is 10 ms. Having an open acoustic coupling, a greater
delay introduces annoying comb filter effects due to the super-
position of the processed and direct signal.

The approaches that are close to our real-time and online
processing constraints were proposed by Valin [13] and Aubre-

ville [3]. Valin et al. [13] uses an RNN processing 20 ms

windows with a 50 % overlap operating at a sampling rate of
48 kHz. To reduce the model complexity they used a bark like
scaling, which further lowers the number of input and output
units. This resulted in a network containing 88.5 k parameters
and about 40 MFLOPs per second. While this algorithm is
real-time capable on a Raspberry Pi and processes the data in
an online fashion, the introduced delay is greater than 20 ms

which is too long for our requirements.

Aubreville et al. [3] employed a hearing instrument-grade
filter bank that introduced a combined latency of analysis and
synthesis of about 6 ms. Additionally, they included future
context of 2 ms resulting in an overall latency of 8 ms. How-
ever, they predicted Wiener gains using a fully connected net-
work containing about 28.6 M parameters, resulting in about
57.3 GFLOPs per second for the algorithm only, not including
filter bank computations.

In this work, we take low latency requirements (≤ 10 ms)
into account and furthermore focus on a parameter and FLOPs

reduction. To achieve our goals, we employ a uniform
polyphase filter bank with a low spectral resolution. We pro-
cess our data in an about 6 ms frame basis with a 1 ms hop
(Sec. 2). While RNN cells, like gated recurrent units (GRUs) or
long short-term memory (LSTM) cells, are able to capture long
and short term dependencies, they require a sufficient amount of
parameters and are hard to train. To be able to reduce the num-
ber of parameters and thus hidden state of the recurrent state, we
use a hierarchical structure to incorporate a short-term temporal
context of ±1 ms. This allows us to employ GRU cells with
down to only 12 hidden units. We report results on the EU-
ROM database using 260 German sentences and 49 real-world
noise signals recorded with hearing aid equipment in Sec. 3.
Furthermore, we provide a comparison with conventional ap-
proaches as well as previous work that employs the same pro-
cessing toolchain. We analyse the complexity of our models
in Sec. 4 and provide calculation basis and assumptions for the
FLOP estimation.

2. Signal Processing Toolchain

We use a standard uniform polyphase filter bank to transform
the time domain signal into time/frequency (TF) domain. Oper-
ating on 24 kHz sampling rate, the analysis window processes
the input signal in an about 6 ms frame basis with an offset
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Figure 1: Processing toolchain. AFB/SFB depict the analysis
and synthesis filter banks.

(hop) of 1 ms. This filter bank ensures our low-latency require-
ments, but results in a low resolution spectral representation
with 48 frequency bins.

The signal block diagram of the noise reduction system is
shown in Fig. 1. We transform the complex filter bank rep-
resentation into decibel scale and normalize it using exponen-
tial averaging. The noise reduction itself is performed on a
bark compressed spectral representation via a real valued mask.
The RNN is trained using the magnitude spectral approximation
(MSA) loss [14].

2.1. Normalization

Normalization is a crucial part of neural network training, as
it tremendously helps with convergence and generalization and
reduces the initialization impact. Furthermore, since the per-
ceived loudness by a human is scaled logarithmically, we first
transform the complex filter bank representation into decibel
scale and clip at −100 dB.

XdB[t, f ] = 10 · log10(max(|X[t, f ]|2, 10−10)) , (1)

where t represents a time step in TF domain and f a frequency
band. We then normalize the spectrogram per frequency bin to
zero mean and unit variance:

Xnorm[t, f ] =
XdB[t, f ]− µ̂[t, f ]√

σ̂2[t, f ]
, (2)

where µ̂ and σ̂ are the estimated mean and variance. That is, we
can calculate mean estimates µ̂ and sample square estimates ŝ
via an exponential decay [15]:

µ̂[t, f ] = αµ̂[t− 1, f ] + (1− α)XdB[t, f ] , (3)

ŝ2[t, f ] = αŝ2[t− 1, f ] + (1− α)(XdB[t, f ])2 , (4)

and get the variance estimate

σ̂2[t, f ] = ŝ2[t, f ]− µ̂2[t, f ] . (5)

Viiki et al. [15] suggested a normalization period τ of approxi-
mately 1 s. With our sampling rate in the filter bank domain, this
corresponds to α = exp(−∆t/τ) ≈ 0.999. We furthermore
evaluated our model with and without variance normalization
in experiment 3.1. I.e., we just assumed that the input had unit
variance and skipped the square and square-root computations.
Xia et al. [16] also used exponentially decaying normalization
and compared it with global mean/variance normalization based
on the training set. They recommend the online approach based
on exponential decay and a normalization period of 3 s.

2.2. Bark scale

Instead of performing the mask based noise reduction directly
on the uniform filter bank representation, we further reduce the
input and output dimensions using a bark like scaling of the
frequency bands. Thus, we can take advantage of the fact that
human frequency perception is also on a logarithmic scale and
use a coarser frequency resolution for the higher frequencies.
That is, we reduce the normalized spectrogram from 48 chan-
nels to 16 bands using rectangular bands, ensuring that the first
8 bark bands until 2 kHz only have 1 frequency channel and
follow the bark scale for higher frequencies. Furthermore, the
network only produces a mask with 16 bins that is transformed
into linear frequency scale via an inverse operation. This allows
to reduce the network size tremendously and we found that it
helps a lot with convergence for very small networks.

2.3. Hierarchical RNN

Temporal context is essential for noise reduction algorithms.
Aubreville et al. [3] showed that a temporal look-back context
� 30ms is required to differentiate a fricative with little energy
at low frequencies from noise only. They furthermore showed
that additionally to past context, future context also results in
a better noise reduction. However, future context always in-
troduces a non-desirable delay, which is why they limited their
future context to 2 ms.

Past context can obviously be incorporated using the hid-
den state of the RNN. Nonetheless, the size of the hidden state,
i.e., the number of neurons, limits the amount of context that
can be stored. Therefore, to allow the network to focus on the
long-term temporal context such as being in a word or phoneme,
we incorporate a temporal context of ±1 ms, denoted as hier-
archical context (HC). But instead of including the short-term
context as input for the first RNN layer (C-RNN), we provide a
context window of the first layer output as input for the second
layer (HC-RNN) as shown in Fig. 2. This hierarchical short-
term context inclusion is similar to fully convolutional networks
that have an increasing receptive field for deeper layers due to
stride > 1. We show in our experiments that the hierarchical
structure using HC outperforms a standard RNN with early fu-
sion.

2.4. Network Training

Several loss functions have been proposed in recent years. In
this work, we only focus on real-valued mask-based losses for
performance and robustness reasons. These loss functions can
be broadly divided into two categories: Mask approximation
(MA) and signal approximation. For the former, common mask
targets are ideal ratio mask (IRM), ideal amplitude mask (IAM)
or a “Wiener filter like” mask (WF) [1]. All of these have
slightly different properties, while WF is optimal w.r.t. the max-
imum SNR, if speech and noise are uncorrelated. Aubreville et
al. successfully used a WF like mask in a hearing aids setting.
The MA loss is defined as

LMA =
∑
t,f

(| |M [t, f ]| − M̂ [t, f ] |2) , (6)
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Figure 2: Hierarchical RNN architecture. The second layer
RNN includes temporal context of the previous, current and next
time step.

where M̂ is the mask estimate and M the target mask, e.g. WF.
Weninger et al. [14] didn’t compute the loss based on the mask,
but rather forced the network to output a mask that was directly
applied to the noisy signal. The loss then was computed based
on the magnitude of the resulting clean and enhanced spectro-
grams. This loss is called magnitude spectrum approximation
(MSA) and defined as

LMSA =
∑
t,f

(| |S[t, f ]| − |X[t, f ]| � M̂ [t, f ] |2) , (7)

where � is a point-wise multiplication. We noticed that espe-
cially for noisy conditions, MSA loss outperforms the MA loss
like WF. Additionally, we provide a comparison with a com-
bined MA-MSA loss in experiment 3.3. We trained the network
with gated recurrent units (GRU) layers using sequences of at
least 5 s, a batch size of 20 and Adam optimizer with a learning
rate of 0.001 using the deep learning framework PyTorch [17].

3. Experiments
In this section, we present various experiments and evaluate
them using the SI-SDR metric [18] and the difference of noisy
to enhanced short-time objective intelligibility (STOI) [19] de-
noted as ∆STOI. All networks (except from experiment 3.1)
use a 2 layer GRU followed by a fully connected layer with
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Figure 3: Mean ∆STOI scores for networks of different sizes.

sigmoid activation. We split our noise and speech corpus on
original signal level in a train, validation (dev) and test set. We
use the same splittings as [3, 5]. All results are based on the test
set unless otherwise stated.

3.1. Experiment: Variance Normalization

While many studies use zero mean and unit variance normal-
ization [3, 16] for the input, we found that normalizing to unit
variance does not provide additional benefit. Tab. 1 shows STOI
improvement of a simple 3 layer LSTM network with 48 hid-
den units each. There is no significant difference, which leads
us to the assumption that the first network layer is able to model
the input variance. Furthermore, the network only produces an
output mask that is applied to the noisy spectrogram, the mask
should be independent of the noisy spectrogram scale. Thus,
for further experiments to minimize the computational effort,
we only use zero mean normalization.

Table 1: ∆STOI dev set results when providing input with zero
mean and unit variance, and zero mean only while keeping the
original variance.

Normalization ∆STOI

Zero mean & unit variance 0.0353
Zero mean 0.0347

3.2. Experiment: Complexity of short-term context via Hi-
erarchical RNNs

In this experiment, we show that networks with hierarchical
context structure (HC-RNN) are favorable w.r.t. ∆STOI score.
While HC-RNNs only need a small input layer, the second layer
incorporates the short-term context of ±1 frames and thus is
larger. We compare these with networks that incorporate the
short-term context in the first layer and thus, have a larger 1st
layer than 2nd layer (C-RNN). Fig. 3 shows ∆STOI scores of
various network sizes. All network configurations are shown in
table 2.
We can see that hierarchical RNN outperforms the conventional

Table 2: Network configurations with input dimension I, hidden
dimension H and number of parameters P for the different net-
works in figure 3. For all networks, the output layer is a fully
connected layer with hidden dimension 16.

GRU Layer 1 GRU Layer 2 Total
Context # I # H # I # H # P

C-RNN 48 16 16 16 5 072

C-RNN 48 24 24 24 9 382

C-RNN 48 32 32 32 14 736

HC-RNN 16 16 48 16 5 072

HC-RNN 16 24 72 24 10 480

HC-RNN 16 32 96 32 17 808



Table 3: Metric results on the test set using our smallest HC-RNN model, RNNoise [13] and FC-WF [3]. Number of network parameters
in brackets. SI-SDR and ∆STOI are provided depending on the input SNR, the root mean squared error of the time-domain signal
(RMSE) is averaged over all input SNRs. The recursive minimum tracking baseline [20] is also evaluated using an attenuation limit of
14 dB.

Metric per SNR [dB]
SI-SDR [dB] ∆STOI RMSE

−5 0 5 10 20 −5 0 5 10 20 -

Model

HC-RNNMSA (5 k) 0.82 5.46 9.71 13.81 21.71 0.025 0.038 0.027 0.015 0.003 0.022

HC-RNNMA−MSA (5 k) 0.56 5.18 9.30 13.43 21.68 0.023 0.042 0.036 0.024 0.008 0.022

RNNoise (68 k) [13] −0.84 6.46 10.14 12.71 15.45 −0.005 0.032 0.032 0.024 0.007 0.021

FC-WF (25 M) [3] −1.65 3.59 8.44 12.84 21.41 0.019 0.042 0.039 0.027 0.007 0.025

Baseline −5.68 0.91 5.97 10.17 16.94 −0.144 −0.095 −0.059 −0.040 −0.026 0.028

Baseline14 dB −4.07 1.74 6.57 10.67 17.48 −0.006 −0.011 −0.015 −0.016 −0.015 0.027

RNN that includes context in the first layer on a per parame-
ter basis. This leads us to conclude that at least for these small
numbers of parameters, it is beneficial to integrate the short-
term context at later layer and thus shift the majority of param-
eters to deeper layers.

3.3. Experiment: Mask Approximation vs. Signal Approx-
imation

Prior work reported that an MSA objective outperforms MA
approaches like WF [1, 14]. However, we found that this heav-
ily depends on the input SNR. The box plot in Fig. 4 shows that
MSA outperforms MA with a WF like mask in noisy conditions
(SNR ≤ 0). For SNRs ≥ 5, MA and MA-MSA loss results in
better ∆STOI scores. Since MA-MSA and MSA seem to per-
form similarly, we evaluated both for our smallest model with
5 k parameters in experiment 3.4.
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Figure 4: ∆STOI results using a hierarchical RNN with 25 k
parameters trained with MSA loss, MA loss using a WF like
mask and combination.

3.4. Experiment: Objective evaluation and comparison
with prior work

We compare our smallest HC-RNN model with various state-
of-the-art results. As a baseline we chose recursive minimum
tracking [20] and also provide results using FC-WG [3] and

RNNoise [13] based on our test set. As one can see in Tab. 3,
the HC-RNN models performs similarly to prior studies, while
the performance slightly drops for larger SNRs for the MSA
loss. In any case, it still outperforms conventional methods like
recursive minimum tracking [20], that is only able to provide an
SDR improvement for SNRs in range 0 to 10.

4. Complexity analysis

The number of FLOPs per second of a GRU is given by

T · 6N(M +N + 1) (8)

where T are the number of time steps, M the input size and
N the hidden size. In our case, we have T = 1000 steps
per second, the smallest network has 16 hidden units in each
layer, while the input size is 16 and 48 respectively. We count
a separate operation for multiply and add. For activation func-
tions like tanh or sigmoid, we assume a lookup table consuming
1 FLOP. Additionally with the fully connected output layer,
this results in 10.0 MFLOPS. The normalization requires addi-
tional 0.14 MFLOPS, the bark scaling 48 kFLOPS. The filter
bank is not considered here, since it is required also for other
tasks and implemented via hardware. Compared to RNNoise
which requires about 40 MFLOPS, we still have a consider-
able FLOPS reduction of a factor 4, while lowering the delay
from ≥20 ms to 8 ms. Our model is able to run in real-time on
a Raspberry Pi 3 using the non optimized Python front-end of
the deep learning framework PyTorch.

5. Conclusion

We presented a real-time noise reduction approach for low-
delay and low-computation requirements. Our overall delay is
about 8 ms, consisting of about 6 ms filter bank analysis and
synthesis, 1 ms future context and 1 ms processing. While we
are able to obtain similar results to other real-time approaches
like RNNoise, we reduce the number of parameters significantly
to only 5 k and number of FLOPS to about 10 M.
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