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Abstract
Abstractive summarization is a standard task for written docu-
ments, such as news articles. Applying summarization schemes
to spoken documents is more challenging, especially in situ-
ations involving human interactions, such as meetings. Here,
utterances tend not to form complete sentences and sometimes
contain little information. Moreover, speech disfluencies will
be present as well as recognition errors for automated systems.
For current attention-based sequence-to-sequence summariza-
tion systems, these additional challenges can yield a poor at-
tention distribution over the spoken document words and ut-
terances, impacting performance. In this work, we propose
a multi-stage method based on a hierarchical encoder-decoder
model to explicitly model utterance-level attention distribution
at training time; and enforce diversity at inference time using a
unigram diversity term. Furthermore, multitask learning tasks
including dialogue act classification and extractive summariza-
tion are incorporated. The performance of the system is evalu-
ated on the AMI meeting corpus. The inclusion of both train-
ing and inference diversity terms improves performance, out-
performing current state-of-the-art systems in terms of ROUGE
scores. Additionally, the impact of ASR errors, as well as per-
formance on the multitask learning tasks, is evaluated.

Index Terms: abstractive spoken document summariza-
tion, hierarchical model, attention diversity, multitask learning.

1. Introduction
The quantity of available spoken documents such as meeting
recordings, broadcast news, and lectures is rapidly increasing.
Spoken document summarization systems improve data access
as they yield concise information about content [1]. The two
main types of summarization are: extractive methods which se-
lect and reorder words or sentences in the original source; and
abstractive methods that can generate words and phrases that do
not appear in the source. Past work on spoken documents nor-
mally applied traditional machine learning or extractive meth-
ods [2, 3, 4, 5, 6]. Many recent approaches based on sequence-
to-sequence neural networks [7, 8, 9, 10] have shown promising
results on the abstractive text summarization task such as news
articles. However, when it comes to spoken documents such
as meeting transcripts, the input source is typically longer, less
grammatical, and contains less-structured utterances rather than
well-constructed sentences. Consequently, standard sequence-
to-sequence neural models with attention mechanism [11] that
take a long sequence of tokens have been shown to be less ef-
fective than hierarchical models for this task [12, 13].

The number of spoken document datasets that have been
annotated for the summarization task is limited. In this work,
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we focus on meeting summarization based on the AMI corpus
[14]. The AMI corpus contains far fewer training examples
compared to widely used text summarization datasets such as
CNN/DailyMail [7]. The summaries of these meetings are also
similar to each other as they are mainly about a group of people
discussing the design of a product. As a result, trained systems
may produce commonly used words and repeated sentences, i.e.
they suffer the diversity problem.

Although hierarchical models [15] do not outperform non-
hierarchical models [8, 16] on CNN/DailyMail, the hierarchical
models are more suitable for meeting summarization [12, 13].
Thus, in this work, we focus on hierarchical models. Neverthe-
less, the issue of diversity remains. When manual summaries
are generated, information from different input utterances is
typically used to generate each of the summary output sen-
tences. This motivates us to model the diversity at the utterance-
level within the sequence-to-sequence attention mechanism, al-
lowing this diversity to be explicitly optimized during training.
This diversity modeling approach is different to the coverage
mechanism [8, 17] and global variance loss [18] approaches,
which are designed to mitigate repetitions. In contrast, the pro-
posed approach operates at the utterance level instead of word
level; and encourages the utterance-level attention to be simi-
lar when generating the same output sentences but varied when
generating different output sentences. In addition, to encourage
diversity at test time, we use a modified decoding approach that
uses a unigram bias term to improve output sentence diversity.

Furthermore, in spoken language, information is conveyed
not only by the words uttered. For instance, [19] demonstrates
that signals such as semantic slot and dialogue domain can im-
prove dialogue summarization. Utterances may also serve dif-
ferent functions within a conversation. Thus interactive signals
such as dialogue acts have been shown to be useful in predict-
ing topic description [20]. In the AMI corpus, dialogue acts and
salient utterance information are available, therefore, we con-
duct an experiment on the impact of additional information on
summarization performance.

In practical scenarios, an automatic speech recognition
(ASR) system is required to obtain the word transcript prior to
the summarization step. Since these systems are not perfect, it is
crucial to understand the impact of ASR errors on summariza-
tion performance. Therefore, we conduct our experiments on
the AMI dataset using both manually derived and automatically
derived transcripts.

2. Summarization Approach
2.1. Hierarchical Encoder-Decoder Architecture

Hierarchical summarization models use an encoder-decoder
architecture where the encoder consists of word-level and
utterance-level gated recurrent units (GRUs) [21], and the de-
coder consists of a GRU attending to the encoder states. For



utterance i containing words ui = {wi,1, wi,2, ..., wi,Ni},
we embed word wi,j into vector xi,j , and apply a bidirec-
tional word-level GRU resulting in {
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The hidden vector of the final word hw
i,Ni is selected to rep-

resent utterance i, and we apply the bidirectional utterance-
level GRU on the output of the word-level GRU resulting in
{hu
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u
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u
N} whereN is the number of utterances. The de-

coder embeds each word at time step t and passes it to a GRU
giving the decoder hidden state dt. Next, the decoder attends to
the hidden states of the encoder hierarchically:

• Utterance-level attention:
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The word-level attention distribution is used to produce a con-
text vector h∗t =

∑
i

∑
j α

w
t,i,jh

w
i,j . This context vector is con-

catenated with the decoder state and fed through a linear layer,
which has output units equal to the vocabulary size, to produce
the output word distribution:

P (y|αw
t ,H

w,dt) = softmax(Wo[h∗t ;dt] + bo) (3)

where αw
t is the vector of all word level attentions at time in-

stance t and Hw is the input document word embeddings.

2.2. Diversity Scores

Given the hierarchical attention mechanism, it is possible to de-
fine the diversity of input document attention both within an
output sentence and between output sentences. Let αu

t be the
vector of all utterance-level attentions at time instance t. Inter
and intra utterance diversity scores can then be expressed as:

• intra-sentence:
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• inter-sentence:
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where k denotes output sentence k, Tk is the number of tokens
in sentence k, and K is the total number of output sentences.

2.3. Model Training

For this work supervised learning is used. The training data
comprises pairs of input document utterances, {u1, . . . ,uN},
and associated summary sentences {y1, . . . ,yM}. The param-
eters are optimized to maximize the likelihood of the set of J
summary document pairs:
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For simplicity of notation, this will be written in terms of the
predictions of each of the words in the summary. For the word
level prediction for a particular training example pair this can
then be written as:
Lml =

∑
i,t

logP (yi,t|αw
t ,H

w,dt) =
∑
i,t

logPt(yi,t) (9)

To improve the generalization, auxiliary tasks can be used
for multitask learning. Here two tasks are used: dialogue act
classification; and extractive summarization. Given the output
of the utterance-level GRU for utterance i, hu

i , we pass the vec-
tor to two distinct linear layers:

Pda(q|hu
i) = softmax(Wdahu

i + bda) (10)

Pex(r|hu
i) = sigmoid(Wexhu

i + bex) (11)

where q is the dialogue act, one of 15 possible classes for this
data, and r the binary extractive summarization label. The ex-
tractive summarization, Lex, and dialogue act, Lda, loss func-
tions are also maximum likelihood based.

The auxiliary tasks can also be combined with a diversity
loss to try to enforce diversity on the final generated sequence.
Using the diversity scores defined in section 2.2, an appropri-
ate diversity loss, Ldv is the ratio of the intra to inter diversity
scores Dintra/Dinter. The complete loss function to minimize is a
linear combination of all the losses:

L = −Lml − λ1Lda − λ2Lex + λ3Ldv (12)

2.4. Decoding

During training, the decoder uses ground truth tokens as the in-
put history (Teacher Forcing mode). At test time, the decoder
has to use its own prediction from the previous time step as the
input (Free Running mode). However, the system has not been
trained to correct for errors in the history. There exist meth-
ods that aim to mitigate the discrepancy between teacher forc-
ing and free running such as scheduled sampling [22], professor
forcing [23], attention forcing [24], but they require modifica-
tion in training. Also, recent work [25] shows that the standard
maximization-based decoding method leads to output text that
can get stuck in repetitive loops. On our task, we will show that
in free running mode, inter-sentence diversity score (described
in section 2.2) drops, yielding less diverse output. Thus, we pro-
pose a simple method that works with any model trained with
teacher forcing without modification by penalizing repeated un-
igrams, Unigram Bias decoding:

ŷt = arg max
y∈V

{
logPt(y)− β

(∑t
τ=1 1y(ŷτ )

t

)}
(13)

where β is the unigram bias constant, V is the decoding vocab-
ulary, and 1y(ŷτ ) is 1 when y = ŷτ .

3. Experimental Setup
3.1. Datasets and Evaluation Metrics

AMI Meeting Corpus [14] contains meeting recordings of four
people discussing a remote control designing project. Each
meeting is about 30 minutes, and there are 137 meetings (ex-
cluding those without the annotation required for multitask
learning). This work makes use of the dialogue acts, and ex-
tractive and abstractive summaries annotation in addition to the
manual transcripts. The default data split is 97 training, 20 val-
idation, and 20 test meetings from the guideline on the AMI
website. The manually derived transcripts have 784 utterances,



6,200 words, on average per meeting, and each summary con-
tains 10 sentences of up to 300 words. Two sets of automati-
cally derived transcripts (test set), from ASR systems using the
manual segmentation, are used for testing our final model:

• ASR1 - AMI release v1.5 which is publicly available and
also used in [6, 12]. The word error rate (WER) is 36%.

• ASR2 - a TDNN-F acoustic model [26] trained on AMI
IHM training set using the Kaldi toolkit [27], with a 4-
gram language model trained on the same set and the
Fisher Corpus (LDC2004T19) [28]. 40-dim Mel-scaled
filterbank features and 15 TDNN-F layers were used.
The word error rate (WER) is 20%.

CNN/DailyMail, processed as in [7], contains news articles
(781 words on average) and summaries (average 3.75 sentences,
56 words). The non-anonymized version containing 287,226
training, 13,368 validation, and 11,490 test pairs, was used.

The ROUGE-N F1 scores [29] is used as the evaluation
metric for summarization performance. ROUGE-N measures
the overlap of n-grams between the system and reference sum-
maries, e.g. ROUGE-1 refers to the overlap of unigrams.
ROUGE-L measures the longest common subsequence.

3.2. Implementation details

Two baseline systems are used for initial contrasts with the hi-
erarchical systems: (1) DecoderLM which is a decoder-only
model with the same architecture as the decoder of the hier-
archical model, but with no conditioning on the input docu-
ment. This can be viewed as a baseline to assess the com-
plexity and diversity of the summaries, (2) A publicly avail-
able pointer-generator network (PGN) implementation1 with
the hyperparameters set as in [8]. For the hierarchical model,
a PyTorch implementation was generated2. The following con-
figurations were used: word embedding 256-dimensional; the
hidden states of word-level and utterance-level encoder GRUs
256-dimensional; and the hidden states of decoder GRU 512-
dimensional. The vocabulary size was 30k. This model was op-
timized using Adam [30] with α = 0.01× step−0.5, β1 = 0.9,
and β2 = 0.999. The batch size was set to 2, the maxi-
mum number of words in an utterance to 64, and the max-
imum number of utterances to 1,500. Training was stopped
when performance on the validation set did not improve over
three epochs. When multitask or diversity objectives were used,
λ1 = λ2 = 0.2 and λ3 = 1.0 in Equation (12), manually tuned
on the validation data. At test time, beam search of width 10
was used, and output sentences are rejected if there was a 4-
gram overlapping with any previous sentences in the summary
to avoid redundancy [9, 31]. We trained each model three times.
In each time, we used a different seed value for initialization and
data shuffling, and we made the training set contain 100 meet-
ings by randomly selecting 3 meetings from the validation set.

AMI CNN/DailyMail
Decoding intra inter intra inter

TF 0.01309 0.00663 0.07437 0.08365
FR 0.01327 0.00540 0.07548 0.07890
UB 0.01328 0.00588 0.07735 0.10597

Table 1: TF, FR, UB denote teacher forcing, free running, and
unigram bias (β = 20.0) decoding methods respectively.

1https://github.com/atulkum/pointer summarizer
2https://github.com/potsawee/spoken summ div

4. Results
Initially, the diversity of the test set summaries was evaluated
for three generation modes with the hierarchical model: teacher
forcing (TF); free-running (FR); and the unigram bias decoding
(UB). As shown in Table 1, the FR mode has the lowest inter-
sentence diversity, more repetitions, as the diversity from the
reference in TF has been lost. Using UB decoding increases the
inter-sentence diversity. Figure 1 shows a detailed analysis of
UB decoding with the value of β on the AMI data. There is
little variation in the intra-sentence variability, but clear gains
in the inter-sentence diversity.

Figure 1: The increase in the diversity scores evaluated on AMI.

The performance of the system was first evaluated using the
manual AMI transcriptions, and the results are shown in Table
2. For the news article summarization task, the first few sen-
tences are typically used as a baseline summary [32], but in
this task, since information is more evenly spread in the source,
the DecoderLM is quoted as the baseline system. The PGN
with coverage, PGN+Cov, [8] outperforms this baseline. Addi-
tional gains can be obtained with transfer learning (TL) where
the model was initialized using the CNN/DailyMail data. The
hierarchical models achieve higher ROUGE scores, consistent
with [12].

Model TL ROUGE-1 ROUGE-2 ROUGE-L

DecoderLM 7 26.00±3.55 8.26±1.62 24.78±3.15

PGN+Cov 7 29.90±0.88 10.41±0.99 28.16±1.12

PGN+Cov 3 33.43±1.70 11.29±1.55 31.42±1.64

Hierarchical 7 33.07±0.66 10.87±1.18 31.77±0.86

Hierarchical 3 39.12±2.45 13.03±1.58 36.77±2.28

Table 2: ROUGE F1 on the AMI test set - Baseline Models. TL
denotes model being pre-trained on CNN/DailyMail.

In Figure 2, the impact of unigram bias on the ROUGE-1,
ROUGE-2, ROUGE-L, and the average of the three scores for
β ∈ [0.0, 40.0] is shown for the baseline hierarchical models
(HIER), the inclusion of multitask training (HIER+MT), the di-
versity training loss (HIER+DIV), and both (HIER+MT+DIV).
Since unigram bias decoding penalizes repeated unigrams,
ROUGE-1 improves for all models as expected. Figure 1 shows
that the inter-sentence diversity score flattens at β = 20.0, and
it can be seen in Figure 2 that ROUGE-1 of the hierarchical set-
ting also stops improving at β = 20.0. This suggests a positive
correlation between models being diverse and higher ROUGE-
1. ROUGE-L, which measures the longest common sequence,
also follows the same trend as ROUGE-1. However, the in-
crease in ROUGE-2 is less than the increase in ROUGE-1, and
in one setting there is no gain from unigram bias.

The optimal β and summarization scores, from Figure 2,
for each system are shown in Table 3. Additionally training



Figure 2: Variation of ROUGE F1 scores against unigram bias for the hierarchical model (HIER), with multitask training (HIER+MT),
diversity loss (HIER+DIV) and both (HIER+MT+DIV).

the model with multitask (HIER+MT) or diversity objectives
yields performance gains. When explicitly optimizing the di-
versity objective during training (HIER+DIV), the model per-
formance is similar to the baseline with unigram bias decoding
(HIER with β = 20.0). When the diversity loss is optimized,
a lower value of β is required to achieve optimal performance,
suggesting that explicit diversity optimization during training
and forcing diversity during decoding have a similar effect. The
results also show that diversity optimization and unigram bias
are complimentary, and the best performance is achieved in
the HIER+MT+DIV with unigram bias decoding setting. In
addition, on the CNN/DailyMail dataset, the HIER+MT+DIV
with unigram bias decoding system achieves higher ROUGE-1,
ROUGE-2, ROUGE-L scores than the HIER system by 3.81%,
0.67%, and 3.29%, further confirming the effectiveness of our
approach.

Setting β ROUGE-1 ROUGE-2 ROUGE-L

HIER 7 39.12±2.45 13.03±1.58 36.77±2.28

20.0 42.39±1.91 11.60±1.60 39.27±1.96

HIER+MT 7 40.13±0.93 13.59±0.66 38.00±0.74

5.0 42.69±1.03 13.94±0.86 39.94±0.94

HIER+DIV 7 41.94±0.25 12.87±0.28 39.30±0.56

1.00 42.84±1.10 12.94±0.50 39.79±1.83

HIER+MT+DIV 7 44.46±0.11 14.51±0.12 41.12±0.13

0.25 44.36±0.58 14.62±0.21 41.10±0.25

Table 3: ROUGE F1 on the AMI test set - Hierarchical Settings.

Table 4 shows the performance of the best system
(HIER+MT+DIV with β=0.25) on ASR transcripts. When us-
ing the AMI ASR (A1) transcripts instead of the manual tran-
scripts, the decrease in ROUGE is around 2-3%. This rela-
tively small drop is likely because even at 30% WER, the sen-
tence/utterance embedding similarity between a manual source
and an ASR source is about 0.70-0.85% [33, 34]. This system
achieves higher all ROUGE measures than extractive method
CoreRank [6], and when compared to abstractive method Top-
icSeg (without visual signals) [12] our system achieves higher
ROUGE-2 and ROUGE-L although lower ROUGE-1. Further-
more, when using transcripts with lower WER (A2), ROUGE
scores are closer to those obtained from the manual transcripts,
and yield higher ROUGE-2 and ROUGE-L scores than the
state-of-the-art multi-modal TopicSeg+VFOA. [12].

Finally, for the multitask trained systems, it is possible to
evaluate the performance of the system on the other training
tasks, Dialogue Act classification (DialogueAct) and Extractive
Summarization (ExtractiveSum). Both tasks used the encoder

Model Input ROUGE-1 ROUGE-2 ROUGE-L

CoreRank [6] A1 37.86 7.84 13.72
TopicSeg [12] A1 51.53 12.23 25.47
TopicSeg+VFOA [12] A1 53.29 13.51 26.90

A1 41.23±0.75 12.74±0.21 38.38±0.63

HIER+MT+DIV A2 43.29±1.81 14.45±0.23 40.55±1.20

M 44.36±0.58 14.62±0.21 41.10±0.25

Table 4: A1 = publicly available ASR transcripts (WER=36%),
A2 = ASR2 transcripts (WER=20%), M=Manual transcripts.

of the hierarchical model. For the DialogueAct baselineLda was
optimized, and for the ExtractiveSum baseline Lext was opti-
mized. For the HIER+MT setting, the weighting of the loss
terms, λ1 and λ2 in Equation (12) were both set to 10.0, and for
the HIER+MT+DIV setting, λ3 was set to 1.0. Table 5 shows
that the summarization signal improves both dialogue act clas-
sification and extractive summarization labeling tasks. Our best
dialogue act accuracy is comparable with [20]. The diversity
loss, in contrast, does not benefit these two tasks. This is ex-
pected as the diversity criterion aims to improve the diversity of
the attention mechanism of the decoder, whereas for these two
tasks only the encoder of the summarization system is used.

DialogueAct Accuracy ExtractiveSum F1

HIER 63.42±0.82 HIER 54.47±3.75

HIER+MT 64.32±0.39 HIER+MT 56.05±1.61

HIER+MT+DIV 63.11±0.36 HIER+MT+DIV 56.06±2.39

Table 5: Dialogue Act Classification (1-in-15 classification)
and Extractive Summarization Labeling at 0.5 threshold.

5. Conclusions
The hierarchical model was shown to be effective on the spoken
document summarization task. The proposed explicit utterance-
level attention diversity model and unigram bias decoding were
both shown to improve our summarization system. It was
demonstrated that a multitask learning method, which incor-
porates dialogue act and salient utterance information, is use-
ful for summarization. The hierarchical model with multitask
and diversity objectives (HIER+MT+DIV) with unigram bias
decoding was found to be the best configuration for the meeting
dataset. For a real-world spoken document application based
on ASR system with WER about 20%, it was illustrated that
summarization performance close to that obtained from manual
transcription can be achieved.
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