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Abstract

Unsupervised representation learning of speech has been of

keen interest in recent years, which is for example evident in

the wide interest of the ZeroSpeech challenges. This work

presents a new method for learning frame level representations

based on WaveNet auto-encoders. Of particular interest in the

ZeroSpeech Challenge 2019 were models with discrete latent

variable such as the Vector Quantized Variational Auto-Encoder

(VQVAE). However these models generate speech with rela-

tively poor quality. In this work we aim to address this with

two approaches: first WaveNet is used as the decoder and to

generate waveform data directly from the latent representa-

tion; second, the low complexity of latent representations is im-

proved with two alternative disentanglement learning methods,

namely instance normalization and sliced vector quantization.

The method was developed and tested in the context of the re-

cent ZeroSpeech challenge 2020. The system output submitted

to the challenge obtained the top position for naturalness (Mean

Opinion Score 4.06), top position for intelligibility (Character

Error Rate 0.15), and third position for the quality of the rep-

resentation (ABX test score 12.5). These and further analysis

in this paper illustrates that quality of the converted speech and

the acoustic units representation can be well balanced.

Index Terms: voice conversion, acoustic unit discovery

1. Introduction

Unsupervised speech representation learning has gained inter-

est of researchers. It has been shown that representation learn-

ing benefits downstream speech applications such as: speech

recognition [1], speaker verification [2] and voice conversion

[3]. In some recent voice conversion systems [3, 4, 5], auto-

encoder based models with disentanglement learning objective

functions have achieved good performance. The aim of the dis-

entanglement learning in these systems is to remove the speaker

information and retain the speech content information.

Most current deep neural network (DNN) based techniques

for speech processing tasks such as automatic speech recogni-

tion (ASR) [6, 7, 8] and text-to-speech (TTS) [9, 10, 11] rely

on annotated resources or expert knowledge. It still remains a

challenge to utilize speech processing techniques for languages

that lack resources. Zero Resource Speech Challenge series

[12, 13, 14] aim to explore speech processing techniques for a

’low-resource’ situation. In the ZeroSpeech 2015 challenge and

ZeroSpeech 2017 challenge, the key objective is to learn a rep-

resentation of speech which is robust to speaker variations. The

ZeroSpeech 2019 challenge was expanded to a multi-task sce-

nario covering both: acoustic unit discovery and voice conver-

sion. Participants were required to submit the obtained acoustic

units representation and the converted speech. The ZeroSpeech

2020 challenge consolidates the ZeroSpeech 2017 challenge

and the ZeroSpeech 2019 challenge.

In the ZeroSpeech 2015 & 2017 challenge, the best per-

formance methods were based on Dirichlet Process Gaussian

Mixture Model (DPGMM) [15]. As the discriminative acous-

tic units representation, clustering posterior grams [16, 17] ob-

tained from the DPGMM have been used. However, these pos-

terior grams are still found to contain the speaker information.

In order to learn a speaker-invariant representation, Higuchi et

al. [18] used DNN bottleneck feature and speaker adversar-

ial training. Besides, vocal tract length normalization (VTLN)

[19] and fMLLR for speaker normalization [17] were also used.

Feng et al. [20] used a disentanglement learning model [3]

combined with the DNN bottleneck feature learning system.

The state of the art acoustic unit discovery performance [21] of

the ZeroSpeech 2017 challenge was obtained by using VQVAE

[22] with a WaveNet [23] decoder and time-jitter regularization.

More recently, in the context of multi-task learning, the Ze-

roSpeech 2019 challenge was dominated by use of auto-encoder

with discrete latent variable such as VQVAE [22] . VQVAE ob-

tains the representation in a discrete latent space and generates

the converted speech from a discrete latent space. However, it

is notable that VQVAE based systems [24, 25] suffered from

poor quality of the reconstructed speech. We hypothesize that

the cause of this phenomenon derives from two main reasons:

(1) the speech is generated in a two-stage process with inde-

pendently trained vocoder models (2) the discrete latent space

with low complexity might cause the fine-grained acoustic units

information to be lost.

This work aims to improve the speech quality and retain

the discriminability of the representation. In order to learn a

better representation of the fine-grained acoustic units, the main

idea is to increase the complexity of the latent representation in

a WaveNet [22] auto-encoder model. The contribution can be

summarised as following: (1) an auto-encoder with a WaveNet

decoder is used to directly generate waveform data; (2) instead

of using vector quantization as in VQVAE, we propose to uti-

lize two alternative disentanglement learning methods. More

specifically, we propose to use sliced vector quantization mod-

ule [26], aiming to increase the complexity of the discrete latent

space. Furthermore, we propose to add instance normalization

[27] layers to the WaveNet auto-encoder model, which has a

continuous latent representation.

2. Proposed Methods

In this section, methods submitted to the 2019 part of the Ze-

roSpeech 2020 challenge are introduced. The 2019 part is a

multi-task scenario including two sub-tasks: acoustic unit dis-

covery and voice conversion. In the context of multi-task learn-

ing, the challenge requires the participants to develop a repre-

sentation of acoustic units without supervision. The representa-

tion are supposed to be speaker-invariant. Based on the repre-

sentation, the participants need to generate the converted speech
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Figure 1: System architectures: (a) WaveNet auto-encoder

(WAE), (b) instance normalization WaveNet auto-encoder (IN-

WAE), (c) sliced vector quantized WaveNet auto-encoder (SVQ-

WAE) x is the input speech, zc is the content code, zs is the

speaker code, s is the speaker ID input, x′ is the reconstructed

speech

given the target speaker ID.

Our submission utilizes two different methods which we

name as instance normalization WaveNet auto-encoder (IN-

WAE) and sliced vector quantized WaveNet auto-encoder

(SVQ-WAE) respectively. These are independent submissions

in this challenge. IN-WAE is a WaveNet auto-encoder model

incorporated with the instance normalization [27] layers. SVQ-

WAE is a WaveNet auto-encoder model with a sliced vector

quantization [26] bottelneck module.

2.1. WaveNet Auto-encoder

Figure 1(a) illustrates the architecture of the WaveNet auto-

encoder model [21]. Let x ∈ X be the input speech data.

The content encoder converts the acoustic unit information into

the content code zc. Then the WaveNet [23] decoder generates

speech data conditioning on the speaker ID s and the content

code zc. At training time, s is the source speaker ID, which

is associated with the input x. The objective function is to re-

construct the input data x. At conversion time, s is the target

speaker ID, and the model produces converted speech data. As

for acoustic unit discovery, the content code zc is regarded as

the representation of acoustic unit information.

The content encoder contains six 1D convolutional layers

and four residual ReLU [28] layers. The six convolutional lay-

ers can be separated to three groups: (1) 2 layers with kernel

size 3 and stride 1; (2) 2 down-sampling layer with kernel size

4 and stride 2; (3) 2 layers with kernel size 3 and stride 1. The

down-sampling rate of the content encoder is controlled by the

stride of the convolutional layer. For example, two convolu-

tional layers with stride 2 enables a 25 Hz frame rate latent code.

The content code zc and the speaker ID s are the inputs to the

WaveNet decoder. The WaveNet model contains 4 up-sampling

layers and 20 dilation convolutional layers.

2.2. Instance Normalization WaveNet Auto-encoder

Instance Normalization [27] (IN) and Adaptive Instance Nor-

malization [29] (AdaIN) were proposed for image style trans-

fer. IN normalizes the feature for each sample and each feature

channel. Chou et al. [30] has shown that IN can produce disen-

tanglement between content and speaker information. AdaIN is

an extension of IN. AdaIN normalizes the feature as IN, then it

adapts the feature to the target style given by a style input data.

Let m ∈ RB×C×T be the output feature map of a convolu-

tional layer in a deep neural network, where B is the batch size,

C is the number of channels, T is the length of feature frames.

Let mb,c,t represents the element of bth sample, cth channel

and tth frame. The mean µbc and standard deviation σbc of cth

channel and bth sample can be obtained by using the following

equations.

µbc =
1

T

T
∑

t=1

mb,c,t (1)

σ
2
bc =

1

T

T
∑

t=1

(mb,c,t − µbc)
2

(2)

The output of the IN layer is the normalized feature.

o
IN
b,c,t =

mb,c,t − µbc
√

σ2
bc + ǫ

(3)

where oINb,c,t is the normalized feature map, ǫ is a parameter that

avoids numerical instability.

AdaIN receives the style input y and adapts the normalized

feature map.

o
AdaIN
b,c,t = σ(y)oINb,c,t + µ(y) (4)

where σ(y) and µ(y) are trainable functions. Following previ-

ous work [30] adding IN and AdaIN layers to the auto-encoder

model, the IN-WAE extends the WAE by adding the IN layer

to the content encoder and adding the AdaIN layer ahead of the

WaveNet decoder. Incorporating with the IN layer, [30] has

shown the content encoder can normalize the global speaker

variation while retaining the fine-grained acoustic units infor-

mation. The IN-WAE utilizes the same content encoder archi-

tecture as the WAE. The IN layer is added [30] to the IN content

encoder behind every two layers (2,4,6,8,10 th layer).

As shown in Figure 1(b), since the AdaIN layer requires a

speaker code zs, a speaker encoder is used to derive the speaker

information from the speech input y. The speaker encoder con-

tains 3 convolutional layers. The global average pooling layer is

used as the last layer of the speaker encoder, which compresses

the feature into one vector. The output of the speaker encoder

is the speaker code zs, which is the input to the AdaIN layers.

As in Equation 4, zc is adapted according to the speaker code

zs. The WaveNet decoder generates speech data conditioning

on the output of the AdaIN layer and the speaker ID.

2.3. Sliced Vector Quantization WaveNet Auto-encoder

VQVAE [22] is a variant of variational auto-encoder (VAE)

[31]. VQVAE encodes data to a discrete latent space through

Vector Quantization (VQ) bottleneck module. VQVAE consists

of three modules: the encoder, the VQ module and the decoder.
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The VQ module contains a codebook M ∈ RK×D , which is

regarded as a collection of D dimensional embeddings, where

K is the number of embeddings. mk is the kth embedding in

the codebook. Let the output of the encoder be ze, which is

the input to the VQ module. The output of the VQ module zq is

computed as the nearest neighbour of ze in the latent embedding

space M .

zq = argminmk∈M ||ze −mk||2 (5)

The decoder receives zq and reconstructs the data. The objec-

tive function of VQVAE can be written as following formula.

L = logp(x|zq)− ||sg(ze)− zq||2 − β||ze − sg(zq)||2 (6)

The 2nd and 3rd term in Equation 6 are VQ losses, sg is the stop

gradient function where the backward gradient is 0. Since the

training speed of the encoder and the decoder are different, sg

function is used to learn the encoder and the decoder parameters

separately. β is a hyper-parameter that balances two VQ losses.

sg(x) =

{

x forward

0 backward
(7)

Since the VQ module utilizes argmin function, which is non-

differentiable, the straight-through [32] trick is used for gradient

estimation. The straight-through trick maps the gradient from

zq to ze.

The sliced Vector Quantization (Sliced-VQ) module splits

the output of the encoder ze into N slices.

ze = concat(z1e , ..., z
n
e , ..., z

N
e ) (8)

where zne ∈ RD//N , concat is the concatenate function which

concatenates all the feature slices. The Sliced-VQ operates

N parallel sub-VQs on the feature slices {zne }
N
1 . The sub-

codebook for each sub-VQs were defined as {Mn}N1 where

Mn ∈ RK×(D//N). The output of each sub-VQ module can

be computed as:

z
n
q = argminmn

k
||zne −m

n
k ||2 (9)

Then the concatenation of all znq forms the final output of the

Sliced-VQ module.

zq = concat(z1q , ..., z
n
q , ..., z

N
q ) (10)

As illustrated in Figure 1(c), the content encoder feeds the

feature to the Sliced-VQ module, then the output of the Sliced-

VQ module is the content code zc which can be used as the

input to the acoustic unit discovery task. The WaveNet decoder

receives the content code zc and speaker ID s, then generates

the speech data.

3. Experiment Setup

The following describes the experiment setup for the 2019 part

of the ZeroSpeech 2020 challenge. First, the dataset and the

evaluation metrics are introduced. Then the implementation de-

tails of the submissions are described.

3.1. Dataset

The 2019 part of the ZeroSpeech 2020 challenge corpus con-

tains two languages: English dataset for development and a sur-

prise language [33, 34] dataset for test. For each language, the

dataset is split into four parts: the train unit dataset, the train

voice dataset, the train parallel voice set and the test set. The

Table 1: Hyper-parameter exploration: latent representation

frame rate for the IN-WAE, the VQ-WAE and the SVQ-WAE

50 Hz 25 Hz

Model ABX Bit-rate ABX Bit-rate

IN-WAE 19.13 820.08 20.19 385.75

VQ-WAE 33.31 328.50 31.44 163.89

SVQ-WAE(2 slices) 32.68 587.17 26.24 376.82

SVQ-WAE(4 slices) 31.39 790.68 26.06 377.05

train unit dataset is used for developing acoustic units repre-

sentations. The English training unit dataset contains 15 hours

data for about 100 speakers. The train voice dataset is the train-

ing data for target speakers for voice conversion task. The En-

glish train voice dataset contains two speakers, 2 hours data per

speaker. For surprise language, there is only one target speaker

and 1.5 hours data. For the surprise language dataset, the train

unit dataset contains 15 hours for 150 speakers and the train

voice dataset contains 1 speaker with 1.5 hours data.

In our experiment, the train unit dataset and the train voice

dataset are used. The English dataset is used for training and

tuning hyper-parameters. The hyper-parameters are kept fixed

for training on surprise language dataset. The official evalua-

tion process includes subjective and objective evaluations. The

objective evaluation includes two metrics: Machine ABX [35]

and bit-rate. Both of two objective evaluation metrics focus on

the quality of the acoustic unit representation. The machine

ABX measures the discriminability of the representations. The

bit-rate measures the compression rate of the representation.

The subjective evaluation includes: mean opinion score (MOS),

similarity and character error rate (CER). Both the MOS score

and the similarity are a scalar in range [1,5]. The MOS score

represents the naturalness of the converted speech, while the

similarity represents the similarity with the target speaker. The

challenge organisers also conduct human evaluation according

to the transcriptions and uses CER to measure the intelligibility

of the produced speech.

3.2. Implementation

13-dimensional MFCCs with 10 ms step size and 25 ms win-

dow size were used as the speech feature. The MFCCs are con-

catenated with the first and the second derivatives. Mean and

variance normalization is conducted. The length of the speech

segment is 32 frames (320 ms) and the output waveform length

is 5120 samples. The implementation 1 uses the PyTorch [36]

toolkit. The Adam [37] optimizer with learning rate 4e-4 was

used. One single GTX-1080Ti GPU is used for training. The

batch size is 10. The IN-WAE model is trained for 600k steps

on the English training dataset. The SVQ-WAE model is trained

for 400k steps . The training takes one day for every 100k steps.

4. Results

4.1. Latent Representation Frame Rate

In Table 1, the effect of latent representation frame rate on the

discriminability and the compression rate of the acoustic units

representation is explored. For the IN-WAE, the 50 Hz model

obtains better ABX score (19.13) than the model with 25 Hz

frame rate (20.19). However, the model with 50 Hz frame rate

1code: https://github.com/MingjieChen/wavenet_

autoencoders
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Table 2: Hyper-parameter Exploration for the SVQ-WAE

#Slices
ABX/Bit-rate

k=128 k=512 k=1024

N=1 31.44/163.89 30.91/171.98 28.05/175.84

N=2 26.24/ 376.82 28.80/339.55 27.59/303.69

N=4 26.06/377.05 26.92/379.52 27.06/379.76

Table 3: Comparing results of test dataset (surprise language)

Model MOS CER Similarity ABX Bit-rate

Baseline 2.23 0.67 3.26 27.46 74.55

Topline 3.49 0.33 3.77 16.09 35.2

IN-WAE 4.06 0.15 2.67 12.5 387.83

SVQ-WAE 2.28 0.55 2.5 16.47 384.23

gets higher bit-rate (820.08) than 25 Hz (385.75). The number

of the embeddings in the codebook of the SVQ-WAE model is

kept as 128. Table 1 compares the VQ-WAE model, the 2 slices

SVQ-WAE and the 4 slices SVQ-WAE. Comparing two frame

rate options, the trend is that, 25 Hz frame rate obtains better

ABX score than 50 Hz. The best ABX score (26.06) is obtained

when frame rate is 25 Hz with 4 slices.

For the IN-WAE, the 50 Hz model shows better discrim-

inability than the 25 Hz model, because higher compression rate

might causes the fine-grained acoustic units information such as

short phones to be lost. As for the SVQ-WAE, the 25 Hz model

shows better discriminability than the 50 Hz model. Comparing

two proposed methods, the IN-WAE shows better discriminabil-

ity than the SVQ-WAE.

4.2. Bottleneck Shape in the SVQ-WAE

The hyper-parameters in terms of the shape of the sliced-VQ

module in the SVQ-WAE are explored. This part of experiment

explores the number of the embeddings k in codebook of the

sliced-VQ module and the number of slices N . The frame rate

is kept as 25 Hz. In Table 2, the best ABX score (26.06) is when

k is 128 and N is 4, and the best bit-rate (163.89) is when N is 1

and k is 128. The trend is that the ABX score gets lower and the

bit-rate gets higher as the number of the slices N increasing.

It means that the latent space is getting more complex as N

increases. And a higher complexity of the latent space benefits

the modeling of the acoustic units information. Moreover, a

higher N also means a higher bit-rate. It is also notable that

increasing the number of embeddings k has a negative effect on

both the ABX score and the bit-rate.

4.3. ZeroSpeech Challenge Results

The challenge official baseline method is a combination of a

DPGMM [15] system and a Merlin [38] system. The topline

method is a combination of an ASR and a TTS systems trained

with annotated data.

Table 3 and 4 present the result of our submissions and the

provided official systems on developing dataset (English) and

test dataset (surprise language) respectively. The total number

of submissions was 22, including two official systems. On the

surprise language dataset, the IN-WAE obtains the top position

for both the naturalness (MOS score 4.06) and the intelligibil-

ity (CER 0.15). Meanwhile, it achieves the third position for

discriminability of the representation (ABX score 12.5). How-

ever, it is obvious that the speaker similarity is worse than the

Table 4: Comparing results of developing dataset (English)

Model MOS CER Similarity ABX Bit-rate

Baseline 2.14 0.77 2.98 35/63 71.98

Topline 2.52 0.43 3.1 29.85 37.73

IN-WAE 3.61 0.18 2.57 20.19 385.75

SVQ-WAE 2.88 0.47 2.35 26.06 377.05

Figure 2: The result comparison of ABX score and MOS score

for part of the submissions in ZeroSpeech challenge 2020 test

data

official baseline system. The SVQ-WAE obtains the fifth posi-

tion for ABX score, whereas it does not show an advantage on

any other metrics. Comparing the IN-WAE and the SVQ-WAE,

the IN-WAE with continuous representation has advantages on

both speech quality and representation discriminability. For the

English dataset, as shown in Table 4, the IN-WAE achieves the

third position for both naturalness (MOS score 3.61) and repre-

sentation discriminability (ABX score 20.19 ) and the top posi-

tion for intelligibility (CER 0.18). The SVQ-WAE achieves the

6th position on ABX score and the 8 th on MOS score. Both the

IN-WAE and the SVQ-WAE are not showing competitive per-

formance for speaker similarity. The reason might be that the

latent representation still contains speaker information with an

increased complexity.

4.4. Challenge Result Comparison

We aimed to improve the quality of the speech and meanwhile

keep the discriminability of the representation. Figure 2 plots

the results of a part of submissions in this challenge. As shown

in Figure 2, the IN-WAE obtains a better MOS score while a

worse ABX score than [39]. The SVQ-WAE does not obtain

good MOS score however it still gets competitive performance

on ABX score.

5. Conclusions and Future Work

We proposed to incorporate WaveNet auto-encoder with in-

stance normalization and sliced-VQ respectively. In the Ze-

roSpeech 2020 challenge, the IN-WAE obtains competitive per-

formance on naturalness, intelligibility and representation dis-

criminability. Meanwhile, the SVQ-WAE obtains competitive

representation discriminability. In future work, the methods that

can achieve good speaker similarity for voice conversion will

be explored. Moreover, the techniques that can accelerate the

WaveNet auto-encoder model inference will be investigated.
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