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Abstract
Formant tracking is one of the most fundamental problems in
speech processing. Traditionally, formants are estimated using
signal processing methods. Recent studies showed that generic
convolutional architectures can outperform recurrent networks
on temporal tasks such as speech synthesis and machine trans-
lation. In this paper, we explored the use of Temporal Convo-
lutional Network (TCN) for formant tracking. In addition to
the conventional implementation, we modified the architecture
from three aspects. First, we turned off the “causal” mode of
dilated convolution, making the dilated convolution see the fu-
ture speech frames. Second, each hidden layer reused the out-
put information from all the previous layers through dense con-
nection. Third, we also adopted a gating mechanism to alle-
viate the problem of gradient disappearance by selectively for-
getting unimportant information. The model was validated on
the open access formant database VTR. The experiment showed
that our proposed model was easy to converge and achieved
an overall mean absolute percent error (MAPE) of 8.2% on
speech-labeled frames, compared to three competitive baselines
of 9.4% (LSTM), 9.1% (Bi-LSTM) and 8.9% (TCN).
Index Terms: formant tracking, convolutional architecture

1. Introduction
Formants are considered to be resonances of the vocal tract dur-
ing speech production. An accurate estimation of formant fre-
quencies in spontaneous speech is often desired in many phono-
logical experiments of laboratory phonology, sociolinguistics,
and bilingualism [1, 2]. They also play a key role in the percep-
tion of speech and are useful in the coding, synthesis and en-
hancement of speech, as every phoneme has a unique formants
distribution, especially on vowels and sonorous consonants.

Classical formant tracking algorithms are based on peak
picking from Linear Predictive Coding (LPC) spectral analy-
sis [3, 4, 5, 6]. LPC spectral coefficients yield intra-frame point
estimates of candidate frequency parameters via root finding or
peak-picking. The inter-frame parameter selection and smooth-
ing can be performed by minimizing various cost functions in
a dynamic programming environment [7, 8]. However, these
classical approaches have an obvious shortcoming that the re-
quired root-finding or peak-picking procedure cannot be writ-
ten in closed form [9]. More elaborate methods used prob-
abilistic and statistical models to obtain confidence intervals
around the estimated formant tracks [9], such as quantization

of Vocal Track Resonances (VTR) space [10], Kalman filtering
[9, 11, 12], HMM [13, 14, 15] and GMM [16].

The aforementioned ad-hoc signal processing methods [17]
usually emerge false peaks and formant merging when affected
by high pitch or coarticulation. These problems can be allevi-
ated by visually correcting with the help of linguistic knowl-
edge and spectral analysis. Motivated by this idea, Deng et
al. released a handpicked VTR/Formants corpus in 2006 [18].
It was subsequently adopted by some researchers as bench-
mark dataset to develop and evaluate new algorithms for for-
mant tracking. For example, Mehta et al. evaluated their
proposed Kalman-based autoregressive moving average mod-
eling methods on this database [9]. Inspired by the great suc-
cess of deep learning in many application areas, Dissen et
al. employed Long Short-Term Memory (LSTM) networks to
train a supervised regression model between LPCCs plus Pitch-
Synchronous Cepstrum Coefficients (named PSCCs) and hand-
corrected formant frequencies for every speech frame [17].
Later, Dissen et al. [19] investigated the potential of raw spec-
trograms (55 × 50 PSCCs) for formant tracking with Convolu-
tional LSTM networks [20] and found that incorporating the
PSCCs and LPCCs achieved the better general performance
than using them separately.

Recent studies showed that generic convolutional architec-
tures can outperform recurrent networks on tasks such as speech
synthesis and machine translation [21, 22]. In particular, the
Temporal Convolutional Network (TCN) for sequence model-
ing was proposed [23], which was composed of dilated causal
convolutional networks with residual connection. Stacking con-
volutional layers with different dilation factors can capture the
long-range dependence of the sequence. Integrating different
hidden features through residual connection makes model more
robust. In this work, therefore, we explored whether such ad-
vantages of TCN are beneficial for formant tracking. In additon
to the application of the conventional TCN model, we modified
its architecture from three aspects: 1) we turned off the “causal”
mode of dilated convolution, making sure the dilated convolu-
tion see the future speech frames; 2) all the dilated convolutions
are closely connected, thus effectively reusing the shallow fea-
tures; 3) we adopted a gating mechanism to automatically select
forgetting unimportant information during training. In terms
of quantitative error analysis, we compared our proposed ap-
proach with other five methods for formant tracking on the VTR
test set, including WaveSurfer [7], Praat [8], LSTM model, Bi-
LSTM model and TCN based model.
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Figure 1: Overview of proposed model framework for formant tracking.
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Figure 2: (a) Gated linear unit. (b) An example of dilated 1D convolution with dilation factors d = 1, 2, 4 and filter size k = 3.

2. Model Description
The architecture of proposed model for formant tracking is
shown in Figure 1, our framework mainly consists of three com-
ponents: (1) dilated convolutions, (2) dense connections and (3)
gated linear units, all of which are described in subsequent sec-
tions.

2.1. Dilated convolutions

The generic TCN architecture uses dilated 1D causal convolu-
tion where the convolution filter is applied over an area larger
than its length by skipping certain input values [23]. Compared
with LSTM, the dilated causal convolution needs less nonlinear
operations, making the model converge easier. The receptive
field can be set to an arbitrary large size by increasing dilation
factor. A major disadvantage of dilated causal convolution is the
“causal” mode when handling the context-dependent sequence
tasks. It can only look back at history information because the
output at time T is convolved only with elements from earlier
to current time step. In speech formant tracking, formants of
each frame will be affected by future frames, so we turned off
the “causal” mode of dilated convolution, making the dilated
convolution see the future information. A common practice is
to use a dilation factor sequence of form {1, 2, 4, 8, ...}. When
d = 1, a dilated convolution reduces to a regular convolution.
Using larger dilation factor yields an top level output which can
capture a wider range of inputs. We provide an illustration in
Figure 2(b). In this work, there are 9 1D convolutions stacked
with the dilation factors {1, 2, 4, 1, 2, 4, 1, 2, 4} to obtain long
context dependence, as shown in Figure 1. Every dilated con-
volution layer has 64 filters with a size of 3.

2.2. Dense connections

The depth of the neural network model is important for learn-
ing advanced representations, but it is also accompanied with
the challenge of gradient disappearance. Residual training [24]
is considered to be an effective way to address this problem.

Using this connection mode, TCN can build a very deep net-
work. Densely connected networks were recently proposed in
[25]. They can be regarded as a natural evolution version of [24]
where the inputs to a given layer in the network are a concatena-
tion of the outputs from all the previous layers. This way avoids
the vanishing gradient problem in depth model. Another advan-
tage is that each layer reused output from all previous layers,
such that different level features are fused to improve the ro-
bustness of the model. Inspired by the effectiveness of dense
connection, we adopted it in our model. A slight difference
from [25] is that all the dilated convolutions are closely con-
nected to capture more fine-grained features as shown in the
densely connected arcs of Figure 1.

2.3. Gated linear units

There are several Gating mechanisms that had been explored
in modern convolutional architectures for sequential modeling
[26, 27, 28]. Parallel to our work, [27] has shown the form of
(X ×W + b)

⊗
σ(X × V + c) is more effective than oth-

ers for language modeling. Coupling linear units to the gates,
referred to as gated linear units, reduce the vanishing gradient
problem. This retains the non-linear capabilities of the layer
while allowing the gradient to propagate through the linear unit
without scaling. Similarly, in this work, after applying the lin-
earity to the Batch Normalization output of every dilated 1D
convolution, we attenuated it with a sigmoid gate (shown in Fig-
ure 2(a)). Moreover, we used SpatialDropout1D [29] at the back
of each gated linear unit to sparse the output dimensions (chan-
nels) information, thus improving the robustness of the model.

3. Experiment
3.1. Dataset

VTR corpus [18] was used in this study to evaluate our model
and baselines. It contains 538 SX or SI utterances, selected
as a representative subset of TIMIT corpus. Here, SX de-



notes phonetically compact utterances and SI denotes phonet-
ically diverse utterances. The training set consists of 346, out
of which 324 utterances have handpicked VTR. These 346 ut-
terances cover 173 speakers with one SX and one SI utterance
from each speaker. The test set consists of 192 utterances cov-
ering 24 speakers, and each speaker has 5 SX utterances and 3
SI utterances. Both training and test sets were first annotated by
an automatic formant tracking algorithm [11], and subsequently
hand-corrected for every 10 ms frame by a group of phonolo-
gists based on visual inspection of the first three formants in the
spectrogram. We further set aside 24 utterances of 12 speakers
(fecd0, mgrl0, falk0, mjrh1, fpaf0, mtrt0, fcdr1, mwsh0, fbch0,
msjk0, fjrp1, mdlc1) from the training set as the validation set.

3.2. Data preprocessing

Following the study [19], we used the same acoustic features
(LPCCs + PSCCs). A new frame of 30 ms consisted of three
original frames of 10 ms in VTR, formant values of which were
averaged. In our experiments, we used MATLAB software to
extract 8 ∼ 17 order 30-dim LPCCs (total 300-dim). We first
removed the DC component and applied a pre-emphasis filter
(H(z) = 1 − 0.97z−1) to the input speech signal. Then the
input signal was divided into frames, and the acoustic features
were extracted from each frame. The frame shift was 10 ms,
and frames were overlapping with Hamming windows of 30 ms.
The 50-dim PSCCs was directly extracted from Dissen’s open
source code [19].

3.3. Loss function

Dissen et al. [19] used a fully connected layer with 3 neurons as
the output layer to predict F1, F2 and F3 of each speech frame.
The high level features, i.e., the output of the last hidden layer,
were shared by each formant but not specific. In fact, there is
an inner relationship between formants, each of which has a
specific frequency band. Inspired by the success of multitask
output [30], we adopted a similar hard parameter sharing struc-
ture. In our framework, there were three parallel branches of
fully-connected layers with 256 neurons from dilated convolu-
tional networks. Finally, each of them was linearly transformed
to predict the formant. The formant prediction was consider to
be independent but mutually restricted to each other in this way.
The error between output and reference formant frequency was
optimized by the following objective function,

L = α× LF1 + β × LF2 + γ × LF3 (1)

where L is the sum loss of first three formants prediction. LF1,
LF2, and LF3 are the losses for F1, F2 and F3, respectively.
α, β, and γ represent the weights for the three losses, and they
are set to the same value of 1/3 as each formant prediction
deemed to be equally important. To make a fair comparative
study, this loss function is applied to all baseline models.

3.4. Training configuration

The following experiment settings were also applied to all deep
learning models including the baselines. The deep learning
toolkit used in this work is Keras. The loss function to mini-
mize was mean absolute error, and we used Adam [31] as the
optimizer. The initial learning rate of optimizer was set to 0.001
and decreased by 0.0005 after training 50 epochs. All configu-
rations were trained for maximum 100 epochs with a batch size
of 4 spoken utterances. The model which had the smallest loss
on validation set was selected. Silent segments at both ends of

utterances were not trained and evaluated. We fixed a maxi-
mum length of 710 frames on VTR dataset. Short utterances
were padded zeros if they were shorter than the fixed maximal
length. During training and testing, we used the Masking layer
of Keras to locate the zero time step to be skipped.

3.5. Baselines

The LSTM tracking model was trained using the same model
configuration from [19] except for the previously mentioned
optimizer and loss function. On this basis, we trained the Bi-
LSTM tracking model by replacing the LSTM layers with Bi-
directional LSTM layers. We further trained the TCN based
tracking model using the same model parameter settings for our
proposed model. In addition to the three neural network formant
tracking models, we also extracted formants using two widely
used speech analysis tools: WaveSurfer and Praat.

3.6. Metrics

Two quality measures were calculated to quantify the distance
of formant tracker output to the annotation reference:

• MAE: mean absolute error between reference and for-
mant tracker output calculated over speech frames.

• MAPE: mean absolute percent error between refer-
ence and formant tracker output calculated over speech
frames.

The smaller the value is, the more the formant tracker out-
put matches the reference.

4. Results and Discussion
Figure 3 shows the training (dashed lines) and validation (solid
lines) loss for different neural network models. Although they
follow the same trend in the beginning stage, the LSTM based
models (curves with obvious fluctuations as shown in Figure 3)
appear to be more difficult to converge than other models after
the first 20 epochs, even over-fitting happened to the Bi-LSTM
model. With a faster convergence speed, “Ours” achieved even
better performance than the TCN model.

Ours
Ours-val

TCN-val

Bi-LSTM-val
TCN

Bi-LSTM
LSTM-val
LSTM

Figure 3: Training and validation loss for different neural net-
work models.

Tables 1-4 present the quantitative error analysis for our
model. Different from [19] where they trained models on a sub-
set but testing on the whole dataset, we assured that there was



Table 1: MAE(Hz) and MAPE(%) on whole VTR test utterances. 

 

 WaveSurfer Praat LSTM Bi-LSTM TCN Ours 

MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE 

F1 111 26.7 232 55.0 89 16.9 86 16.6 82 15.2 73 15.0 

F2 160 11.1 301 21.6 94 6.6 89 6.1 88 5.7 80 5.6 

F3 255 10.6 368 15.6 119 4.8 115 4.6 111 4.2 98 4.0 

Overall 176 16.1 300 30.7 101 9.4 97 9.1 94 8.9 84 8.2 

 

Table 2: MAE(Hz) on broad phone classes. 

 

        WaveSurfer    Praat LSTM Bi-LSTM              TCN                      Ours 

F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3 

vowels 52 94 156 101 158 219 61 65 95 60 68 99 52 58 86 46 56 79 

semivowels 67 119 218 120 243 309 76 86 134 74 80 128 69 86 125 60 72 108 

nasal 102 324 285 191 406 366 71 153 142 69 139 136 67 152 126 60 133 108 

fricatives 255 269 490 572 624 731 145 129 144 141 113 131 142 122 138 128 105 121 

affricatives 287 330 372 779 551 607 180 159 178 169 135 174 168 140 174 161 143 161 

stops 149 151 264 278 285 394 129 114 138 124 103 127 124 108 143 111 98 121 

 

Table 3: MAPE(%) on broad phone classes.  

 

         WaveSurfer        Praat LSTM  Bi-LSTM              TCN                   Ours 

F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3 

vowels 10.7 6.2 6.6 22.3 11.0 9.5 11.3 4.4 3.8 11.1 4.5 3.9 9.8 3.9 3.6 8.9 3.7 3.2 

semivowels 14.9 9.9 9.7 27.5 23.1 14.4 14.8 7.7 5.7 14.5 6.7 5.3 13.7 7.8 5.4 12.4 6.4 4.6 

nasal 24.4 22.4 11.5 48.3 30.9 15.2 15.5 11.2 5.6 15.1 9.8 5.4 15.0 11.3 5.0 13.8 9.7 4.3 

fricatives 65.5 18.6 19.7 138.2 42.6 29.7 27.9 9.0 5.7 27.5 7.6 5.1 27.4 8.5 5.6 26.7 7.2 4.8 

affricatives 75.0 18.7 14.4 190.4 30.9 23.9 32.8 8.5 6.6 31.8 7.3 6.5 31.3 7.6 6.6 32.6 7.7 6.1 

stops 36.0 10.3 11.2 65.1 20.8 17.1 24.3 7.9 5.8 23.6 6.8 5.3 23.6 7.5 6.1 22.7 6.7 5.1 

                                                             

Table 4: MAE(Hz) on CV transitions and VC transitions. 

 

         WaveSurfer    Praat LSTM Bi-LSTM              TCN                      Ours
F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3 

CV 

transitions 

253 316 463 538 562 731 113 151 157 110 139 147 112 153 162 101 133 140 

VC 

transitions 

245 291 451 523 526 703 110 145 152 108 134 143 110 146 157 99 127 135 

 

no overlap between the training set and the test set, thus objec-
tively evaluating the generalization performance of supervised
model.

Table 1 shows the precision of F1, F2, F3 and overall
in MAE and MAPE. (Note that the results were only cacu-
lated over speech-labeled frames [9] for the formant estima-
tion of non-speech is meaningless.) From this table, we can
see neural network models/trackers significantly outperformed
WaveSurfer and Praat. The results also show the effectiveness
of convolutional architectures for formant tracking. It is worth
mentioning that our model achieved the smallest error rate even
compared with the advanced Bi-LSTM and TCN model. We
further categorized the speech sounds to six categories like [19].

Table 2 and Table 3 respectively presents the accuracy in
MAE and MAPE for each broad phone class. The depth for-
mant tracking models outperformed Praat and WaveSurfer al-
most in every category, except that WaveSurfer had a better esti-
mation of F1 on vowels. The TCN model had a better accuracy
than the LSTM and Bi-LSTM model on vowels, semivowels
(excepts for F2) and nasal (excepts for F2). The overall best
performance on almost every phone was achieved by our pro-
posed model, excepts for F2 of affricatives.

We also examined the errors of the algorithms when lim-
iting the error-counting regions to only the consonant-to-vowel
(CV) and vowel-to-consonant (VC) transitions. In this study,
the number of frames of the transition regions were not fixed
like [19] as the CV or VC boundary was not known in advance
in practical application. Our model also achieved the best pre-

cision among all methods.

5. Conclusions
In this paper, we proposed a novel temporal convolutional net-
work upon the conventional TCN model for formant tracking.
The “causal” mode of dilated convolution was turned off to cap-
ture the impact of speech context. Each layer reused the output
from all previous layers through the dense connection. With
the gating mechanism, the model selectively forgets unimpor-
tant information. The approach was validated on an open ac-
cess dataset. The experimental results showed that our model
achieved the best performance on almost all broad phone classes
and transitions, compared to LSTM based models and TCN
model. In the future, we will consider estimating the formants
of vowels segments and investigating whether pre-training is
helpful for this task.
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