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Abstract
The RNN transducer is a promising end-to-end model can-
didate. We compare the original training criterion with the
full marginalization over all alignments, to the commonly
used maximum approximation, which simplifies, improves and
speeds up our training. We also generalize from the original
neural network model and study more powerful models, made
possible due to the maximum approximation. We further gener-
alize the output label topology to cover RNN-T, RNA and CTC.
We perform several studies among all these aspects, including
a study on the effect of external alignments. We find that the
transducer model generalizes much better on longer sequences
than the attention model. Our final transducer model outper-
forms our attention model on Switchboard 300h by over 6%
relative WER.
Index Terms: RNN-T, RNA, CTC, max. approx.

1. Introduction & Related work
End-to-end models in speech recognition are models with a
very simple decoding procedure, and often a simple training
pipeline. Usually the model directly outputs characters, sub-
words or words. One of the earlier end-to-end approaches was
connectionist temporal classification (CTC) [1]. Most promi-
nent is the encoder-decoder-attention model which has shown
very competitive performance [2–5]. Once the streaming aspect
becomes more relevant, or having a monotonicity constraint on
the (implicit or explicit) alignment, the global attention model
needs to be modified. Several ad-hoc solutions exists with cer-
tain shortcomings [6, 7]. The recurrent neural network trans-
ducer (RNN-T) model [8, 9] (or just transducer model) is an
alternative model where the outputs can be produced in a time-
synchronous way, and thus it is implicitly monotonic. Because
of this property, RNN-T has recently gained interest [10–22].
RNN-T can be seen as a strictly more powerful generalization
of CTC.

Several variations of RNN-T exists, such as the recur-
rent neural aligner (RNA) [23], monotonic RNN-T [24] or hy-
brid autoregressive transducer (HAT) [25]. The explicit time-
synchronous modeling also makes the alignment of labels ex-
plicit, and requires a blank or silence label. The alignment be-
comes a latent variable. Most existing work keeps the model
simple enough such that the marginalization over all possi-
ble alignments can be calculated efficiently via the forward-
backward algorithm [8]. In case of RNA, an approximation is
introduced.

Initializing the encoder parameters from another model
(such as a CTC model) has often been done [9, 11, 19, 26]. Ini-
tializing some of the decoder parameters from a language model
is common as well [11,19,27]. Using an external alignment has
been studied in [19].

Differences in time-synchronous models (such as hybrid
hidden Markov model (HMM) - neural network (NN) [28,
29]) vs. label synchronous models (such as encoder-decoder-
attention and segmental RNN) w.r.t. the alignment behavior are
studied in [30]. Time-synchronous decoding is also possible on
joint CTC-attention models [31].

2. Model
Let xT

′
1 be the input sequence, which is encoded by a bidirec-

tional LSTM [32] with time downsampling via max-pooling [2]
and optional local windowed self-attention [33]

hT1 = Encoder(xT
′

1 ).

Let yN1 be the target sequence, where yn ∈ Σ, for some discrete
target vocabulary Σ, which are byte-pair encoded (BPE) labels
[2, 34] in our work. We define a discriminative model

p(yN1 | xT
′

1 ) =
∑

αU
1 :(T,yN1 )

U∏
u=1

p(αu | αu−1
1 , hT1 ),

where αu ∈ Σ′ := {〈b〉} ∪ Σ, where 〈b〉 is the blank label.
The output label topology T over Σ′ defines the mapping on t,
and generates the sequence yN1 . More specifically, the topology
T defines ∆tT (α) ≥ 0 such that tu+1 = tu + ∆tT (αu),
and t1 = 1, tU = T , and ∆nT (α) ≥ 0 such that nu+1 =
nu + ∆nT (αu), and n1 = 1, nU = N . We study multiple
variants of the label topology for α. Emitting a 〈b〉 label will
always consume a time frame, and 〈b〉 will be removed from
the final output. We study three variants:

• CTC topology [1]: Label emits time frame, repeated la-
bel will be collapsed. In this case, U = T , and ∆t ≡ 1,
tu = u, and ∆n(αu) = 1αu 6=〈b〉∧αu 6=αu−1

.
• RNA topology [23] or monotonic RNN-T [24]: Label

emits time frame, repeats will not be collapsed. U = T ,
and ∆t ≡ 1, tu = u, and ∆n(α) = 1α6=〈b〉.

• RNN-T topology [8]: Label does not emit time frame,
repeats will not be collapsed. U = N+T , and ∆t(α) =
1α=〈b〉, and ∆n(α) = 1α6=〈b〉.

We generalize from the common RNN-T and RNA model
and describe our decoder network in terms of a fast and slow
RNN [35–39]. The fast RNN iterates over u ∈ {1, . . . , U},
while the slow RNN is calculated in certain sub frames nu ∈
{1, . . . , N}, whenever there was a new generated y. We visu-
alize the unrolled decoder in Figure 1. The decoder for given
frame u is defined by

sfast
u := FastRNN

(
sfast
u−1, s

slow
nu
, αu−1, htu

)
,

sslow
nu

:= SlowRNN
(
sslow
nu−1, αu′−1, htu′

)
,

u′ := min{k | k ≤ u, nk = nu}. (last emit)
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Figure 1: Unrolled decoder. The output labels are in {〈b〉}∪Σ.
A bold output depicts the emission of a new label in Σ (depend-
ing on the output label topology). SlowRNN is only updated
when there is a new label. In case of RNN-T label topology, the
encoder is only updated when there is no new label. In case of
the original RNN-T model, SlowRNN has no dependency on the
encoder.

Both the SlowRNN and the FastRNN are LSTMs in our base-
line. Note that we have ynu−1 = αu′−1, and if we remove the
dependency on h in SlowRNN, and if we remove FastRNN
and just set sfast

u = htu , we get the original RNN-T model. To
get the probability distribution for α over Σ′, we could use a
single softmax, as it was done for the original RNN-T and also
RNA. Our baseline splits Σ and 〈b〉 explicitly into two separate
probability distributions:
p(αu=〈b〉 | ...) := σ(Readoutb(sfast

u , sslow
nu

)),

p(αu 6=〈b〉 | ...) = σ(−Readoutb(sfast
u , sslow

nu
)),

q(αu | ...) := softmaxΣ(Readouty(sfast
u , sslow

nu
)), αu ∈ Σ

p(αu | ...) := p(αu 6=〈b〉 | ...) · q(αu | ...), αu ∈ Σ

where Readout is some feed-forward NN. This can also be in-
terpreted as a hierarchical shallow softmax. HAT [25] uses a
similar definition. Note that the expressive power is equivalent
to the single distribution:

q(αu | ...) =
p(αu | ...)∑

α′u∈Σ p(α
′
u | ...)

, αu ∈ Σ

p(αu 6=〈b〉 | ...) = 1− p(αu=〈b〉 | ...).

2.1. Training
The model will be trained by minimizing the loss

L := − log p(yN1 | xT1 ) = − log
∑

αU
1 :(T,yN1 )

p(αU1 | xT1 ).

The sum
∑
αU
1

is usually solved via dynamic programming [40]
by iterating over u ∈ {1, . . . , U}. When we have a dependence
on individual αu in the decoder, it is not possible to calculate
the sum

∑
αU
1

efficiently. It is possible though to do an approx-
imation in the recombination [23]. The simplest approximation
is to only use a single item of the sum, specifically arg maxαU1 ,
which is the well known maximum approximation, which is
done via the Viterbi alignment, or some other external align-
ment, as it is the standard approach for hybrid HMM-NN mod-
els [28, 29]. We study two variants here:

• Exact calculation of the full sum (when possible).
• Maximum approximation, together with fixed external

alignment αU1 . This is equivalent to frame-wise cross
entropy training.

Using a fixed external alignment for the max. approxima-
tion has the disadvantage that we depend on a good exter-
nal alignment, which complicates the training pipeline. But it
comes with a number of advantages:

• We can train strictly more expressive models, which can
potentially be more powerful, where the full sum cannot
be calculated efficiently anymore.

• The training itself is simpler and reduces to simple
frame-wise cross entropy training. This requires less
computation and should be faster.

• It is more flexible, and we can use methods like chunking
[29], focal loss [41], label smoothing [42].

• In addition, maybe it is more stable? Or we get faster
convergence rate?

We also study the relevance of the type of external align-
ment. This is a forced alignment on some other unrelated model
with the same output label topology. This other model can be a
weaker model, only trained with the goal to generate the align-
ments. We study several variants of models for this task.
2.2. Decoding
We use beam search decoding with a fixed small beam size (12
hypotheses). The hypotheses in the beam are partially finished
sequences αu1 of the same length u. The pruning is based on
the scores p(αu1 |xT1 ). I.e. the decoding is time-synchronous (in
case U = T ), or synchronous over the axis {1, . . . , U} [22].
This is the same beam search algorithm and implementation as
for our attention-based encoder-decoder model [2]. The only
difference is that it runs over the axis {1, . . . , U}.

As an optimization of the beam search space, we combine
multiple hypotheses in the beam when they correspond to the
same partial word sequence (after BPE merging), and we take
the sum of their scores (which is another approximation, based
on the model).

3. Experiments
We use RETURNN [43] as the training framework, which
builds upon TensorFlow [44]. For the full-sum experiments on
the RNN-T label topology, we use warp-transducer1. Our cur-
rent full-sum implementation on the other label topologies is a
pure TensorFlow implementation of the dynamic-programming
forward computation. Via auto-diff, this results in the usual
forward-backward algorithm. This is reasonably fast, but still
slower than a handcrafted pure CUDA implementation, and also
slower than the simple CE training. Both training and decoding
is done on GPU. We present the training speeds in Table 1. We
publish all our code, configs and full training pipeline to repro-
duce our results2.

All the individual studies are performed on the Switchboard
300h English telephone speech corpus [45]. We use SpecAug-
ment [3] as a simple on-the-fly data augmentation. We later
compare to our attention-based encoder-decoder model [4].
3.1. Full-sum vs. frame-wise cross entropy
We compare full-sum (FS) vs. frame-wise cross entropy (CE)
in Table 2. We observe that the full-sum training is more un-
stable, esp. in the beginning of the training, and leads to worse
performance within the same amount of training time. We do
not count the time to get the external alignment, so the compar-
ison might not be completely fair. Chunking also has a positive
effect on the CE training, as we will show later in Table 4.

We study the influence of the external alignment for the
frame-wise CE training in Table 3. We see that a standard CTC
model can be used to generate an alignment, but we also see that
other models produce better alignments for our purpose. Specif-
ically, using a transducer model (trained from scratch with full-

1
https://github.com/HawkAaron/warp-transducer

2
https://github.com/rwth-i6/returnn-experiments/tree/master/2020-rnn-

transducer

https://github.com/HawkAaron/warp-transducer
https://github.com/rwth-i6/returnn-experiments/tree/master/2020-rnn-transducer
https://github.com/rwth-i6/returnn-experiments/tree/master/2020-rnn-transducer


Table 1: On Switchboard 300h. For each model, label topology,
loss (full-sum (FS) or frame-wise cross entropy (CE)), and loss
implementation (pure TensorFlow (TF), or CUDA), we compare
the training time on a single GTX 1080 Ti GPU. This measures
the whole training, not just the loss calculation. CE training is
without chunking.

Model Label Loss Loss # params time / epoch
Topology Impl. [M] [min]

Transd.

RNA

FS TF
147

306
CTC 326

RNN-T 333
CUDA 219

CTC CE TF 160
Attention − 162 138

Table 2: On Switchboard 300h, transducer model, without ex-
ternal LM. Comparison of full-sum (FS) training and frame-
wise cross entropy (CE) training via a fixed external alignment.
All models are trained for 25 epochs and share the same net-
work topology, which has no label feedback to allow FS train-
ing. CE training uses CTC alignments, where label repetition
is enabled for CTC-Vit and disabled for RNA-Vit. CE training
uses chunking.

Label Training WER[%]
Topology Criterion Hub5’00 Hub5’01

SWB CH Σ Σ

RNA FS 11.5 23.4 17.5 16.5
CE 10.1 20.4 15.2 14.8

CTC FS 15.0 24.6 19.8 20.1
CE 10.5 20.6 15.6 15.3

RNN-T FS 11.6 22.3 17.0 16.4

sum) to generate the alignment seems to work best. This is as
expected, as this is the most consistent setup.
3.2. Ablations and variations
Along our research on training transducer models, we came up
with many variants, until we eventually ended up with the base-
lines B1 and B2. Both transducer baselines use the CTC label
topology with a separate sigmoid for the blank label (similar as
in [25]). We use CE training using the fixed alignment CTC-
align 6l (as in Table 3). Sequences of the training data are cut
into chunks [29]. We use focal loss [41], an additional auxiliary
CTC loss on the encoder (for regularization [2, 46]), dropout
[47], dropconnect [48] (weight dropout) for the FastRNN, and
switchout [49] (randomly switch labels for label feedback). B1
uses local windowed self-attention, while B2 does not, which is
the only difference between B1 and B2. Some of these tricks
were copied from our hybrid HMM-NN model [29]. Based on
these baselines, we want to see the effect of individual aspects of
the model or training. We summarized the variations and abla-
tions in Table 4. We see that chunked training greatly helped for
CE training, which is consistent with the literature [50]. We find
that the results about label feedback are not conclusive. Having
the separate sigmoid for blank seems to help.
3.3. Output label topology
We compare the output label topology in Table 2. We find that
the RNN-T topology seems to perform best, followed by RNA,
and CTC is worse. We note that this result is inconsistent to
earlier results, where CTC looked better than RNA. However,
when we repeat the RNA vs. CTC comparison on the B2 model
with CE training, we also see that RNA performs better (14.2%
vs 14.5% WER on Hub5’00). For simplicity, we did not follow
the RNN-T topology further in this work. Also, because of our

Table 3: On Switchboard 300h, WER on Hub 5’00. CE-trained
transducer B1 and B2 models (Section 3.2), always with CTC
label topology, without external LM, with randomly initialized
parameters, trained for 25 epochs. Comparing alignments
(specifically the models used to get the alignments). The align-
ment model was also always trained for 25 epochs.

Alignment model WER[%]
B1 B2

CTC-align 4l 14.7 14.3
CTC-align 6l 14.7 14.5
CTC-align 6l with prior (non-peaky) 15.4 14.9
CTC-align 6l, less training 14.6 14.6
Att.-based enc.-dec. + CTC-align 14.4 14.2
Transducer-align 14.2 14.1

Table 4: On Switchboard 300h, WER on Hub5’00. Ablations
and variations. Using transducer baselines B1 and B2 (see Sec-
tion 3.2 for details), without external LM. B2 is exactly the B1
baseline without local windowed self-attention.

Variant WER[%]
B1 B2

Baseline 14.7 14.5
No chunked training 16.3 15.7
No switchout 15.0 14.5
SlowRNN always updated (not slow) 14.8 14.8
No SlowRNN 14.8 14.7
No attention 14.5 *
FastRNN dim 128→ 512 14.3 14.5
No encoder feedback to SlowRNN 14.9 14.7
+ No FastRNN label feedback (like RNN-T) 14.9 14.5
+ No FastRNN (exactly RNN-T) 15.2 15.1
No separate blank sigmoid 14.9 14.9

earlier results, we focused more on the CTC topology.
3.4. Importing existing parameters
For faster and easier convergence, it can be helpful to import
existing model parameters into our RNA model. If we do not
use the full-sum training, we anyway make use of an external
alignment, which comes from some other model, so it might
make sense to reuse these parameters. We collect our results
in Table 5. We see that the CTC model parameters (of the
same model which was used to create the alignment) seem to
be suboptimal, and training from scratch performs better. The
encoder of an attention-based encoder-decoder model seems to
be very helpful. Importing the model itself, i.e. effectively train-
ing twice as long, helps just as much. However, we can also use
the attention-based encoder-decoder model with an additional
CTC layer on-top of the encoder to generate the alignments as
shown in Table 3. We also tried to initialize the SlowRNN with
the parameters of a LM but this had no effect.
3.5. Beam search decoding
We study different beam sizes, and compare the attention model
and our RNA model. For RNA, we also implemented a varia-
tion of the beam search where hypotheses corresponding to the
same word sequence (i.e. after collapsing label repetitions, re-
moving blank, and BPE merging) were recombined together by
taking their sum (in log space) and only the best hypothesis sur-
vives. The results are in Table 6. In all cases, the WER seems
to saturate for beam size ≥ 8.
3.6. Generalization on longer sequences
It is known that global attention models do not generalize well
to longer sequences than seen during training [51–53]. Esp. the



Table 5: On Switchboard 300h, WER on Hub5’00. Varying the
imported model params, for transducer baseline models B1 and
B2, with CTC topology, trained with CE using a fixed external
alignment (CTC-align 6l), without external LM. Trained for 25
epochs, with randomly initialized parameters, except of the im-
ported ones. The imported models themselves are also trained
for 25 epochs.

Imported model params WER[%]
B1 B2

None 14.7 14.5
CTC as encoder 15.4 15.5
Att. encoder 14.2 13.9
Transducer (itself) 13.7 13.6

Table 6: On Switchboard 300h, WER on RT03S. The transducer
uses the CTC-label topology. Without external LM. Comparison
of performance on different beam sizes. We optionally recom-
bine hypotheses in the beam corresponding to the same word se-
quence (after collapsing repetitions, removing blank, and BPE
merging).

Model Merge WER[%]
Beam size

1 2 4 8 12 24 32 64
Att. no 17.9 17.0 16.7 16.6 16.6 16.5 16.6 16.5

Transd. 16.8 16.4 16.2 16.2 16.2 16.2 16.2 16.2
yes 16.8 16.3 16.0 15.9 15.9 15.9 15.9 16.0

attention process has problems with this. The alignment pro-
cess in the transducer is explicit, and this aspect should have
no problems in generalizing to any sequence length. To ana-
lyze, during recognition, we concatenate every C consecutive
seqs. within a recording and thus increase the avg. seq. lengths.
We show the results in Table 7. We report the WER on RT03S to
minimize overfitting effects. Both models degrade with longer
sequences, but the attention model performs much worse, and
the transducer model has generalized much better. The small
degradation of the transducer could also be explained by un-
usual sentence boundaries. We note that this small degradation
looks better than reported previously (relatively) [52–54].
3.7. Overall performance
Our final transducer model is based on B1 but with RNA label
topology and better transducer-based alignment. We compare
to our attention model and to other results from the literature in
Table 8. Our final transducer model performs better than our
attention model, although it needs the preprocessing step to get
an alignment. We observe that many other works train for much
longer, and there seems to be a correlation between training time
and WER.

4. Conclusions
We found that the frame-wise CE training for transducer mod-
els greatly simplifies, speeds up and improves our transducer
training by methods like chunking. It also allows us to train a
novel transducer model. We gain interesting insights regarding
model behaviour in decoding. Finally we achieve good results
compared to the literature within much less training time. Our
final transducer model is better than our attention model, and
also generalizes much better on longer sequences.
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