
Unsupervised Cross-Domain Singing Voice Conversion

Adam Polyak1,2∗, Lior Wolf1,2, Yossi Adi1, Yaniv Taigman1

1Facebook AI Research 2Tel Aviv University
adampolyak@fb.com

Abstract

We present a wav-to-wav generative model for the task of
singing voice conversion from any identity. Our method utilizes
both an acoustic model, trained for the task of automatic speech
recognition, together with melody extracted features to drive
a waveform-based generator. The proposed generative archi-
tecture is invariant to the speaker’s identity and can be trained
to generate target singers from unlabeled training data, using
either speech or singing sources. The model is optimized in
an end-to-end fashion without any manual supervision, such
as lyrics, musical notes or parallel samples. The proposed ap-
proach is fully-convolutional and can generate audio in real-
time. Experiments show that our method significantly outper-
forms the baseline methods while generating convincingly bet-
ter audio samples than alternative attempts.

1. Introduction
We tackle the audio synthesis task of singing voice conversion.
In this task, a given template song is reproduced by another
singer’s voice. The conversion retains the content and musical
expression of the template song. Singing voice conversion can
aid in improving the vocal qualities of a given singing segment,
create mimicry effects and even enable a single amateur singer
to record an entire chorus in their home studio.

Our method is inspired by recent work on speech voice con-
version [1] and music synthesis [2]. We combine melody ex-
tracted features with acoustic speech features and a powerful
neural audio generation framework [3] to create a singing voice
synthesizer. All features are extracted directly from the raw au-
dio, therefore, our method does not require supervision in the
form of a labelled dataset with lyrics and notes or a parallel
dataset with singers singing the same songs.

From a technical perspective, we present multiple contribu-
tions: (i) introducing an audio generation framework which em-
ploys task-related perceptual losses to improve the quality of the
generated audio, (ii) the first singing voice conversion method,
as far as we know, conditioned on sine-excitation of the song’s
melody, together with intermediate features of a speech recog-
nition network, and (iii) presenting a speaker invariant singing
voice conversion method trained on voices from either speech
or singing datasets (i.e., mimicking in singing either speaking
or singing voices), with either single or multiple identities.

2. Related work
Neural Audio Generation Recent advancements in neu-
ral audio generation enabled computers to generate natural
sounding speech and music. Autoregressive models, such as
WaveNet [4] and SampleRNN [5] generate high-quality audio
in the waveform domain, one sample at a time, resulting in

∗The contribution of Adam Polyak is part of a Ph.D. thesis research
conducted at Tel Aviv University.

slow inference. WaveRNN [6] enabled fast synthesis by train-
ing a compact neural network further optimized via sparsifica-
tion. Feed-forward networks were suggested to further speed
up inference, via knowledge distillation from an autoregressive
teacher-model [7–9]. WaveGlow [10] trained a feed-forward
network without knowledge distillation. Recently, generative
adversarial networks (GANs) [3, 11] were able to match the
quality of autoregressive and large feed-forward models. Paral-
lelWaveGAN [3] trained a mel-inversion network, by combin-
ing adversarial networks with a multi-scale spectral loss. Other
methods, employed multi-scale spectral loss to train convolu-
tional neural networks for spectrogram inversion [12], to di-
rectly predict the parameters of a differentiable synthesizer [13]
and for speech synthesis with sine excitation as input [14].

Singing Synthesis and Conversion Previous singing syn-
thesis methods applied unit selection methods [15] or HMM
based parametric methods [16–18]. Neural networks were used
to synthesize singing [19], by training a WaveNet-like network
conditioned on notes and lyrics to generate vocoder features.
This method was later extended to synthesize new singers based
on a few minutes of them singing [20]. Mellotron [21], pre-
sented a sequence to sequence architecture conditioned on text
and pitch to synthesize singing, without training on a singing
dataset. Recently, non-autoregressive models were used for
singing synthesis. Feed-forward transformers [22] removed the
constraint of time-aligned phonemes, by employing a duration
model. Generative adversarial networks [23], conditioned on
pitch and time-aligned phonemes, predicted a singing spectro-
gram in a single pass instead of a frame-by-frame prediction.

Initial methods for the task of singing voice conversion [24–
26], relied on parallel datasets composed of paired samples of
singers singing the same piece. The method of Unsupervised
Singing Voice Conversion [27] learned to convert between a
fixed set of singers without relying on a parallel-dataset. This
was done by learning singer-agnostic features via a domain con-
fusion term on the singer identity. PitchNet [28] further im-
proved the method, by applying an additional domain confusion
term on the pitch, but was only applied on conversion between
a fixed group of male singers.

Very recently, variational autoencoders were used to con-
vert between singers and their vocal techniques [29], learned
from non-parallel corpora. However, their method was lim-
ited to mel-spectrograms, thereby bounding the audio quality.
A method employing an automatic speech recognition (ASR)
engine [30] was used for singing voice conversion. The ASR
extracts phonemes probabilities, which the model then converts
to the acoustic features of the target singer. The method was
demonstrated on a many-to-one scenario and was only trained
on a singing dataset, while our method is applicable both to
many-to-many conversion and can also be trained on either
speech or singing domains. Similar to us, [31] used WaveRNN
conditioned on phoneme probabilities, pitch and a speaker i-
vector to generate singing audio in the waveform-domain. Our

ar
X

iv
:2

00
8.

02
83

0v
1

 [
ee

ss
.A

S]
 6

 A
ug

 2
02

0

method differs by (i) using a non-autoregressive model for real-
time generation, and (ii) the usage of perceptual losses which, as
we demonstrate, greatly boost the performance of our method.

3. Method
The proposed model is based on a Generative Adversarial Net-
work, with a generator network G and a discriminator network
D. The model is conditioned on both speech and musical fea-
tures, while in the multi-singer generation case, it is additionally
conditioned on a learned singer identity vector. Each feature
set is forwarded via a separate context-stack, similar to [2, 32],
before feeding it to G. The generator is a non-autoregressive
WaveNet, which generates the audio waveform directly from a
random noise vector. Fig. 1 depicts the architecture.
Input Features We denote the domain of audio samples by
X ⊂ R. The representation for a raw speech signal is therefore
a sequence of samples x = (x1, . . . , xT), where xt ∈ X for all
1 ≤ t ≤ T . The length of the input signal varies for different
inputs, thus the number of input samples in the sequence, T , is
not fixed. Given a training set of n examples, S = {xi}ni=1,
we would like to extract representations which are both speaker
invariant, to enable better singer conversion, and independent of
manual annotations, to utilize unlabelled data.

Recent works demonstrated the need of both linguistic and
musical features [19, 20, 30] in the context of singing genera-
tion. As a result, we extract both the loudness measure [33] and
the fundamental frequency (F0) as the musical features. Loud-
ness is represented by the log-scaled A-Weighting of the power
spectrum, floud(x), while F0 is extracted using CREPE [34],
denoted by fcrepe(x), similarly to [2]. We experimented with
different representations of F0, such as: octave, note, etc., and
achieved similar performance.

In preliminary experiments, we observed that using F0 as
input produces inconsistent shakes in the pitch of the gener-
ated samples. Therefore, we turn into conditioning on a syn-
thesized melody generated from the F0 instead. The melody
is synthesized via a single sinusoid sine-excitation, denoted by
Γ(fcrepe(x)).

For speech features, we follow [1] and utilize an intermedi-
ate representation from a pre-trained acoustic model optimized
for the task of Automatic Speech Recognition (ASR) as an addi-
tional input to the model. Specifically, we use the public imple-
mentation [35] of Wav2Letter [36], denoted by fw2l(x). Since
an ASR network is speaker-agnostic by design [37], our method
does not require any disentanglement terms or domain-specific
(speaker) confusion terms.

Finally, we concatenate and upsample the features in the
temporal domain to match the audio frequency.

Single Singer Objective Function We follow the least-
squares GAN [38] setup where the discriminator and generator
would like to minimize the following terms,

LD(D,G, S) =
∑
x∈S

[||1−D(x)||22 + ||D(x̂)||22]

Ladv(D,G, S) =
∑
x∈S

||1−D(x̂)||22
(1)

accordingly. S is the set of samples, x̂ = G(z, E(x)) is the
audio sample synthesized from a random noise vector sampled
from a uniform distribution z ∼ U(0, 1), and the concatenated
features E(x) = [floud(x), fw2l(x),Γ(fcrepe(x))].

In addition, we include a reconstruction loss to further im-
prove optimization stability. We note that two audio samples

might be perceptually similar while being the exact opposite
in the waveform representation, e.g., in the case of a simple
phase inversion (multiply by -1). To mitigate this, we include
a spectral amplitude distance loss [12, 39] in multiple FFT res-
olutions [3, 13, 14]. The spectral amplitude distance loss, for a
given FFT size m, is defined as follows:

L(m)
recon(G,S) =

∑
x∈S

[
‖S − Ŝ‖F
‖S‖F

+
‖ logS − log Ŝ‖1

N

]
(2)

where ‖ ·‖F and ‖ ·‖1 denotes the Forbenius and the L1 norms,
S = |STFT(x)| and Ŝ = |STFT(x̂)| denotes the Short-time
Fourier transform magnitudes of the original and synthesized
samples respectively, and N the number of elements. The first
term of the expression emphasizes spectral peaks, while the sec-
ond penalizes silent sections of the audio. The multi-resolution
loss is defined as the sum of the above loss for multiple scales:

Lrecon(G,S) =
1

|M |
∑
m∈M

L(m)
recon(G,S) (3)

where M = [2048, 1024, 512, 256, 128, 64].
Lastly, to further improve the generation quality, we add

perceptual losses [40] on top of the generator output. Specifi-
cally, we compute the l1-distance between intermediate activa-
tions of the ASR network, hw2l and the CREPE network, hcrepe

as follows:

Lcrepe(G,S) =
∑
x∈S

‖hcrepe(x)− hcrepe(x̂)‖1

Lw2l(G,S) =
∑
x∈S

‖hw2l(x)− hw2l(x̂)‖1
(4)

Overall, the optimization loss for the generator, G, is defined
as:

LG(G,D, S) =Lrecon(G,S) + αLadv(G,D, S)

+ βLcrepe(G,S) + γLw2l(G,S)
(5)

where α, β, γ are weight factors to balance the contribution of
each loss term.
Multi-singer Training Losses In the multi-singer regime, we
include a speaker embedding vi as an additional input toG. The
speaker embeddings are learned during training and stored in a
Look Up Table. Then, the reconstruction of a sample, xi, pro-
nounced by speaker i is updated to be x̂i

i = G(z, E(xi),vi).
Moreover, we introduce two additional training schemes.

The first one is performed by converting a sample from singer i
to singer j, while omitting the reconstruction loss. The second
one introduces novel virtual training samples by creating par-
allel samples using back-translation [41] and mixup [42]. This
was previously shown by [27] to improve singing voice conver-
sion.

These additional objective functions for unaligned samples
are defined as follows,

Lunaligned
D (D,G, S) =

∑
xi∈S

[
‖1−D(xi)‖22 + ‖D(x̂i

j)‖22
]

Lunaligned
G (G,D, S) = αLadv(G,D, S) + βLcrepe(G,S)

+ γLw2l(G,S)
(6)

where x̂i
j = G(z, E(xi),vj). Note the reconstruction loss

is omitted, since we do not have the target sample of singer j
singing sample xi ∈ S.

(a) (b)

Figure 1: Proposed GAN architecture. (a) Generator architecture. Musical and speech features are extracted from a singing waveform
(floud(x), fw2l(x),Γ(fcrepe(x))) and passed through context stacks (colored green). The features are then concatenated and tempo-
rally upsampled to match the audio frequency. The joint embedding is used to condition a non-causal WaveNet (colored blue), which
receives random noise as input. (b) Discriminator architecture. Losses are drawn with dashed lines, input/output with solid lines. The
discriminator (colored orange) differentiates between synthesized and real singing. Multi-scale spectral loss and perceptual losses are
computed between matching real and generated samples.

To virtually simulate unseen singers we follow the mixup
scheme while generating a conversion to a new virtual singer.
Specifically, we use a convex combination of two different
singers embeddings, vj and v′j , as:

u = νvj + (1− ν)vj′ (7)

where ν ∼ U [0, 1] is drawn from the uniform distribution.
Sample xj

u = G(z, E(xj),u) is then generated from xj , and
translated back to singer j as follows: x̂j

u = G(z, E(xj
u),vj).

The produced set of artificial examples is denoted as Smixup =
{(xj , x̂

j
u)}. Finally, the discriminator and generator are opti-

mized by minimizing the loss over supervised, unaligned and
virtual samples:

Lmulti
D (G,D) =LD(G,D, S) + Lunaligned

D (G,D, S)

+ LD(G,D, Smixup)

Lmulti
G (G,D) =LG(G,D, S) + Lunaligned

G (G,D, S)

+ LG(G,D, Smixup)

(8)

Note that in the mixup setting, the x̂ = x̂j
u.

Architecture Generator G, is based on a non-causal
WaveNet architecture [3, 43]. It receives as input a random
noise vector sampled from a uniform distribution, z ∼ U(0, 1)
and the input features described above. Each input feature
(floud, fw2l and fcrepe) is passed through a separate convolu-
tional stack [2, 32], which is composed of two blocks of eight
non-causal convolutional layers. The layers in each block have
an exponentially increasing dilation rate. Each layer employs
128 filters and a kernel-size of 3. The features are then upsam-
pled by a series of interleaved nearest neighbor upsampling and
convolutional layers. Once temporally-aligned to the audio, the
features are concatenated to form the conditioning signal.

The generator is composed of a series of 30 non-causal lay-
ers ordered in three blocks. The dilation rate in a single block
of layers is exponentially increasing. Thus, the model has a
receptive field of 3,072 samples, which means each sample is
generated based on a window of 96ms in future and past direc-
tions. Each layer has 128 residual-channels, 128 skip-channels
and a kernel-size of 3. Our model achieves inference speed of
10.14 times faster than real-time, on a single Tesla V100 GPU.

The discriminator is composed of ten layers of 1-D convo-
lutions followed by a leaky-ReLU activation with a leakiness
of 0.2, with a linearly increasing dilation rate. Each convolu-
tion layer consists of 128 filters with a kernel-size of 3. The

discriminator outputs a prediction for each time-step in the in-
put audio signal. The loss is computed by averaging across
the time-domain. Both the discriminator and generator apply
weight normalization [44] on all layers.

4. Experiments
We perform a series of experiments to evaluate the proposed
method against several baselines. We experimented with gen-
erating singing using speech-only, singing-only and mixed
datasets. We explore both many-to-one conversion on a large
single identity corpus and many-to-many conversion using
learned identities from a corpus with a variable amount of au-
dio per identity. Moreover, we perform an extensive abla-
tion study to better understand the contribution of each com-
ponent. Audio samples are available online at https://
singing-conversion.github.io/, as well as in the
supplementary material.

Datasets We report results on several datasets. LJ [45] is a
large single speaker speech corpus with approximately 24 hours
of audio recording. LCSING is a studio recordings of a sin-
gle professional singer [46], which was filtered using an off-
the-shelf voice activity detector and contains 3 hours and 40
minutes of very expressive and high dynamic range recordings,
including some melodic singing without lyrics. For the multi-
speaker experiments, we use the speech corpus, VCTK [47], to
learn 109 singers with 44 hours of audio recordings. Finally,
the NUS-48E [48] dataset, which includes six male singers and
six female singers, has both singing and reading of four songs
per voice, resulting in a total of 15 minutes per singer. All
audio was down-sampled to 16kHz with a single channel. All
datasets were randomly split according to a 80%/10%/10% of
train/val/test partitions.

Hyperparameters We train our models for 800K steps, with
a batch-size of 8 one second long audio segments. We use
RADAM [49] optimizer with a learning rate of 0.0001. The
learning rate is halved every 200K steps. The discriminator
joins the training process after 100K steps and the perceptual
losses after 50K steps. For the CREPE perceptual loss, we use
the intermediate-activation before the final sigmoid activation.
For the ASR network loss, we use the output of the tenth con-
volutional block. We use α = 4, β = 1, γ = 10 for the weight
factors in Eq. 5. The model is trained with a mixup batch every
3 steps after 100K steps of training had passed.

https://singing-conversion.github.io/
https://singing-conversion.github.io/

Table 1: Test scores for singing voice conversion. For MOS, SIM, identification, higher is better. For VDE and FFE – lower.

Dataset Method MOS ↑ SIM ↑ Identification ↑ VDE ↓ FFE ↓

Source Singing Ground Truth 4.10±0.84 86.11% 100% — —

LJ
Mellotron 3.79±1.06 59.04% 76.47% 8.35% 9.50%
Ours 4.06±0.81 60.46% 97.87% 4.19% 5.51%
Ground Truth 4.51±0.70 70.83% 97.91% — —

VCTK
Mellotron 3.14± 0.82 70.00% 57.67% 15.02% 16.62%
Ours 3.88± 0.56 78.57% 96.41% 6.98% 7.72%
Ground Truth 4.35± 0.74 75.00% 99.28% — —

LCSING
USVC 3.52±0.91 38.24% 8.51% 8.19% 11.46%
Ours 3.81±0.92 67.74% 100% 4.00% 4.80%
Ground Truth 3.95±0.73 77.78% 100% — —

NUS-48E
Mellotron 3.55±0.87 69.44% 60.11% 6.59% 8.02%
WGANSing 3.60±0.94 80.56% 92.27% 3.85% 5.06%
USVC 3.78±0.85 61.90% 93.45% 4.82% 20.80%
Ours 4.04±0.68 81.82% 97.02% 2.47% 3.50%

Singing conversion All experiments were performed by con-
verting singing recordings of the NUS-48E to the target identi-
ties learned from the datasets described above. Therefore, ex-
periments conducted on the LJ, LCSING and VCTK evaluate
the methods’ invariance to the input voice identity, while exper-
iments conducted on the NUS-48E dataset, evaluate the meth-
ods’ performance while converting across a fixed set of singers.

Evaluation metrics are based on subjective and objective
success metrics: (i) Mean Opinion Scores (MOS), human raters
rate the naturalness of the audio samples on a scale of 1–5. Each
experiment, included 40 randomly selected samples rated by 20
raters. (ii) ABX testing for similarity, in which we present each
rater with two audio samples A and B. The examples originate
from two different singers. These two samples are followed
by a third utterance X randomly selected to be from the same
identity as A or B. Next, the rater must decide whether X has
the same identity as A or B. We report the success rate across
all raters. (iii) Automatic identification metric by training a
multi-class classifier on the ground-truth training partitions of
all datasets and reporting the success rate of the classifier, sim-
ilar to [50–52]. (iv) Voicing Decision Error (VDE) [53], which
measures the portion of frames with voicing decision error, (v)
F0 Frame Error (FFE) [54], measures the percentage of frames
that contain a deviation of more than 20% in pitch value or have
a voicing decision error.

Mellotron [21] showed good results on singing generation
by training on speech datasets. Therefore, we use it as the base-
line for the experiments on speech datasets. Given a template
singing sample, Mellotron extracts the rhythm, the alignment
between text and spectral features, which is then used to gener-
ate the conversion. For emotive samples, like in the NUS-48E
dataset, the rhythm extraction sometime failed. Therefore, we
used a forced-aligner [55] to create a synthetic alignment map
and replace the rhythm extracted by Mellotron with the syn-
thetic one before generating the conversion.

For a fair comparison we do not report Mellotron results
on LCSING dataset due to instability in the training caused by
the following reasons. In the LCSING dataset there are only
40 minutes of transcribed segments and many of the recordings
contain non-lexical vocables.

Our experiments on NUS-48E dataset involved baselines
which showed convincing results: WGANSing [23] and Unsu-
pervised Singing Voice Conversion (USVC) [27]. Both meth-

Table 2: Ablation study on the LJ dataset.

Method MOS ↑ VDE ↓ FFE ↓

F0 condition 2.37±0.93 7.20% 8.81%
Melody condition 3.26±1.04 6.33% 7.90%
+ ASR perceptual loss 3.36±0.96 6.47% 8.03%
+ CREPE perceptual loss 4.06±0.82 4.19% 5.51%

ods require multi-singer voice dataset for training. Therefore,
we do not apply them on LJ and VCTK. For the single singer
dataset, we use the same architecture as USVC but without the
confusion term.

Table 1 presents the results for all of the above models. On
speech datasets, LJ and VCTK, our models outperform Mel-
lotron, despite the latter utilizing the underlying text as input.
In addition to subjective quality, our method predicts both voic-
ing decision and pitch accuracy better than Mellotron. Results
on LCSING, show that our method is better than the baseline
and is able to generate recognizable samples. On a multi-singer
dataset, NUS-48E, our method generates subjectively higher
quality samples, which are more identifiable than the baselines.
Ablation We perform ablation for the suggested single singer
training framework. Table 2 summarizes the results. The com-
parison between the F0 condition and the Melody condition,
shows that providing melody as input to the model reduces the
overall error with regard to pitch generation. The addition of the
ASR perceptual loss slightly improves the model MOS scores
at the cost of slightly reducing the pitch metrics. Adding the
CREPE perceptual loss adds a significant gain to the model per-
formance across all metrics.

5. Conclusion
We present an unsupervised method that can convert a singing
voice to a voice that is sampled either as speaking or singing.
The method employs multiple pre-trained encoders and percep-
tual losses and achieves state of the art results on both objective
and subjective measures. Conditioning the generator on a sine-
excitation was shown to be beneficial while further improving
the results. As future work, we would like to focus on temporal
modification of the input singing to further match the style of
the target singer.

6. References
[1] A. Polyak, L. Wolf, and Y. Taigman, “TTS Skins: Speaker Con-

version via ASR,” arXiv:1904.08983, 2019.

[2] L. Hantrakul, J. Engel, A. Roberts, and C. Gu, “Fast and flexible
neural audio synthesis,” in ISMIR, 2019.

[3] R. Yamamoto, E. Song, and J.-M. Kim, “Parallel WaveGAN: A
fast waveform generation model based on generative adversarial
networks with multi-resolution spectrogram,” in ICASSP, 2020.

[4] A. v. d. Oord, S. Dieleman et al., “WaveNet: A generative model
for raw audio,” arXiv:1609.03499, 2016.

[5] S. Mehri et al., “SampleRNN: An Unconditional End-to-End
Neural Audio Generation Model,” in ICLR, 2017.

[6] N. Kalchbrenner et al., “Efficient Neural Audio Synthesis,” in
ICML, 2018.

[7] A. van den Oord et al., “Parallel WaveNet: Fast high-fidelity
speech synthesis,” in ICML, 2018.

[8] W. Ping, K. Peng, and J. Chen, “Clarinet: Parallel wave generation
in end-to-end text-to-speech,” ICLR, 2019.

[9] S. Kim, S.-G. Lee, J. Song, J. Kim, and S. Yoon, “FloWaveNet :
A generative flow for raw audio,” in ICML, 2019.

[10] R. Prenger, R. Valle, and B. Catanzaro, “Waveglow: A flow-based
generative network for speech synthesis,” in ICASSP, 2019.

[11] K. Kumar et al., “MelGAN: Generative Adversarial Networks for
Conditional Waveform Synthesis,” in NIPS, 2019.

[12] S. Ö. Arık, H. Jun, and G. Diamos, “Fast spectrogram inversion
using multi-head convolutional neural networks,” in IEEE Signal
Processing Letters, 2018.

[13] J. Engel, L. Hantrakul, C. Gu, and A. Roberts, “DDSP: Differen-
tiable Digital Signal Processing,” ICLR, 2020.

[14] X. Wang, S. Takaki, and J. Yamagishi, “Neural source-filter-based
waveform model for statistical parametric speech synthesis,” in
ICASSP, 2019.

[15] J. Bonada, M. Umbert, and M. Blaauw, “Expressive singing syn-
thesis based on unit selection for the singing synthesis challenge
2016,” in INTERSPEECH, 2016.

[16] K. Saino, H. Zen, Y. Nankaku, A. Lee, and K. Tokuda, “An
hmm-based singing voice synthesis system,” in Ninth Interna-
tional Conference on Spoken Language Processing, 2006.

[17] K. Oura et al., “Recent development of the hmm-based singing
voice synthesis system—sinsy,” in Seventh ISCA Workshop on
Speech Synthesis, 2010.

[18] K. Nakamura et al., “HMM-based singing voice synthesis and its
application to japanese and english,” in ICASSP, 2014.

[19] M. Blaauw and J. Bonada, “A Neural Parametric Singing Synthe-
sizer,” in INTERSPEECH, 2017.

[20] M. Blaauw, J. Bonada, and R. Daido, “Data efficient voice cloning
for neural singing synthesis,” in ICASSP, 2019.

[21] R. Valle, J. Li, R. Prenger, and B. Catanzaro, “Mellotron: Mul-
tispeaker expressive voice synthesis by conditioning on rhythm,
pitch and global style tokens,” ICASSP, 2020.

[22] M. Blaauw and J. Bonada, “Sequence-to-Sequence Singing Syn-
thesis Using the Feed-Forward Transformer,” in ICASSP, 2020.

[23] P. Chandna, M. Blaauw, J. Bonada, and E. Gómez, “WGANSing:
A multi-voice singing voice synthesizer based on the wasserstein-
gan,” in European Signal Processing Conference, 2019.

[24] K. Kobayashi et al., “Statistical singing voice conversion based
on direct waveform modification with global variance,” in INTER-
SPEECH, 2015.

[25] ——, “Statistical singing voice conversion with direct wave-
form modification based on the spectrum differential,” in INTER-
SPEECH, 2014.

[26] F. Villavicencio and J. Bonada, “Applying voice conversion to
concatenative singing-voice synthesis.” in INTERSPEECH, 2010.

[27] E. Nachmani and L. Wolf, “Unsupervised Singing Voice Conver-
sion,” INTERSPEECH, 2019.

[28] C. Deng et al., “Pitchnet: Unsupervised Singing Voice Conversion
with Pitch Adversarial Network,” in ICASSP, 2020.

[29] Y.-J. Luo et al., “Singing Voice Conversion with Disentangled
Representations of Singer and Vocal Technique Using Variational
autoencoders,” in ICASSP, 2020.

[30] X. Chen, W. Chu, J. Guo, and N. Xu, “Singing voice conversion
with non-parallel data,” arXiv:1903.04124, 2019.

[31] G. Xiaoxue et al., “Personalized singing voice generation using
wavernn,” in Odyssey, 2020.

[32] C. Hawthorne et al., “Enabling factorized piano music modeling
and generation with the maestro dataset,” in ICLR, 2019.

[33] B. C. Moore, B. R. Glasberg, and T. Baer, “A model for the pre-
diction of thresholds, loudness, and partial loudness,” Journal of
the Audio Engineering Society, vol. 45, no. 4, pp. 224–240, 1997.

[34] J. W. Kim, J. Salamon, P. Li, and J. P. Bello, “CREPE: A convo-
lutional representation for pitch estimation,” in ICASSP, 2018.

[35] J. Li et al., “Jasper: An end-to-end convolutional neural acoustic
model,” INTERSPEECH, 2019.

[36] R. Collobert, C. Puhrsch, and G. Synnaeve, “Wav2Letter: an End-
to-End Convnet-based Speech Recognition System,” CoRR, vol.
abs/1609.03193, 2016.

[37] Y. Adi et al., “To reverse the gradient or not: An empirical com-
parison of adversarial and multi-task learning in speech recogni-
tion,” in ICASSP, 2019.

[38] X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. Paul Smolley,
“Least squares generative adversarial networks,” in ICCV, 2017.

[39] A. v. d. Oord et al., “Parallel wavenet: Fast high-fidelity speech
synthesis,” ICML, 2018.

[40] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-
time style transfer and super-resolution,” in ECCV, 2016.

[41] R. Sennrich et al., “Improving Neural Machine Translation Mod-
els with Monolingual Data,” in ACL, 2016.

[42] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup:
Beyond empirical risk minimization,” in ICLR, 2018.

[43] D. Rethage, J. Pons, and X. Serra, “A wavenet for speech denois-
ing,” in ICASSP, 2018.

[44] T. Salimans and D. P. Kingma, “Weight normalization: A sim-
ple reparameterization to accelerate training of deep neural net-
works,” in NIPS, 2016.

[45] K. Ito, “The lj speech dataset,” https://keithito.com/
LJ-Speech-Dataset/, 2017.

[46] L. Crew, http://lucillecrew.com//, 2019.
[47] C. Veaux et al., “CSTR VCTK Corpus: English multi-speaker

corpus for CSTR voice cloning toolkit,” 2017.
[48] Z. Duan et al., “The nus sung and spoken lyrics corpus: A quan-

titative comparison of singing and speech,” in Asia-Pacific Signal
and Information Processing Association Conference, 2013.

[49] L. Liu et al., “On the variance of the adaptive learning rate and
beyond,” in ICLR, 2020.

[50] S. Arik et al., “Deep voice 2: Multi-speaker neural text-to-
speech,” in NIPS, 2017.

[51] Y. Taigman, L. Wolf, A. Polyak, and E. Nachmani, “VoiceLoop:
Voice Fitting and Synthesis via a Phonological Loop,” in ICLR,
2018.

[52] E. Nachmani, A. Polyak, Y. Taigman, and L. Wolf, “Fitting new
speakers based on a short untranscribed sample,” ICML, 2018.

[53] T. Nakatani et al., “A method for fundamental frequency esti-
mation and voicing decision: Application to infant utterances
recorded in real acoustical environments,” Speech Communica-
tion, 2008.

[54] W. Chu and A. Alwan, “Reducing f0 frame error of f0 tracking
algorithms under noisy conditions with an unvoiced/voiced clas-
sification frontend,” in ICASSP, 2009.

[55] M. McAuliffe et al., “Montreal forced aligner: Trainable text-
speech alignment using kaldi.” in INTERPSEECH, 2017.

https://keithito.com/LJ-Speech-Dataset/
https://keithito.com/LJ-Speech-Dataset/
http://lucillecrew.com//

	1 Introduction
	2 Related work
	3 Method
	4 Experiments
	5 Conclusion
	6 References

