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Abstract
Speaker recognition is a popular topic in biometric authen-

tication and many deep learning approaches have achieved ex-
traordinary performances. However, it has been shown in both
image and speech applications that deep neural networks are
vulnerable to adversarial examples. In this study, we aim to
exploit this weakness to perform targeted adversarial attacks
against the x-vector based speaker recognition system. We pro-
pose to generate inaudible adversarial perturbations achieving
targeted white-box attacks to speaker recognition system based
on the psychoacoustic principle of frequency masking. Specifi-
cally, we constrict the perturbation under the masking threshold
of original audio, instead of using a common lp norm to mea-
sure the perturbations. Experiments on Aishell-1 corpus show
that our approach yields up to 98.5% attack success rate to ar-
bitrary gender speaker targets, while retaining indistinguishable
attribute to listeners. Furthermore, we also achieve an effec-
tive speaker attack when applying the proposed approach to a
completely irrelevant waveform, such as music.
Index Terms: targeted adversarial attack, inaudible, adversarial
example, speaker recognition

1. Introduction
In recent years, attacks and defenses of speaker recognition sys-
tems have attracted more and more attention. As one of the
most prominent biometric authentication methods, the security
of speaker identification system is extremely important. Prior
works have found speaker recognition systems are not only fac-
ing the spoofing attacks [1, 2, 3] including impersonation, re-
play, speech synthesis, as well as voice conversion, while ad-
versarial attacks are also be able to affect speaker recognition
systems. In [4], Das et al. gave an overview of the attacker’s
perspective on speaker verification.

Adversarial attacks are usually conducted by adversarial
examples, which are designed by constructing imperceptible
perturbations to lead a mis-classification. Adversarial exam-
ples were first proposed by Szegedy et al. [5] in computer vi-
sion tasks, which show that a certain network is vulnerable
to a crafted small perturbation in the training set. Goodfel-
low et al. [6] proposed an effective approach, fast gradient-sign
method (FGSM), to generate adversarial examples through the
linearization of the loss function. Since then, various experi-
mental results have shown that adversarial examples can suc-
cessfully influence a variety of models [7, 8].

Apart from the applications in image tasks, speech-related
tasks could also be affected by adversarial examples. There
has been plenty of work focused on attacking automatic speech
recognition (ASR) systems using adversarial examples. In [9],
Carlini et al. demonstrated the effectiveness of targeted au-
dio adversarial examples on a end-to-end ASR system. With

optimization-based attacks, they were able to turn any audio
waveform into any target transcription. Instead of using a
lp norm to measure the maximum perturbation introduced as
above, Schönherr et al. [10] introduced a new type of adversar-
ial examples based on psychoacoustic hiding and attacked the
Kaldi ASR system [11] successfully. Next, Qin et al. [12] ex-
tended this idea and developed effectively imperceptible audio
adversarial examples by leveraging the psychoacoustic princi-
ple of auditory masking.

In speaker recognition area, adversarial examples could
also be used to attack and to defend the system. In [13], Kreuk
et al. used adversarial examples for fooling a speaker verifi-
cation (SV) system by adding a peculiar noise to the original
speaker examples. In our previous work [14], we added adver-
sarial perturbations on feature-level to conduct a non-targeted
attack to SV system. We also explored using adversarial exam-
ples for model regularization and improved the robustness of
the SV system. Xie et al. [15] made the DNN based speaker
recognition system can identify the speaker as any target label
by adding audio-agnostic universal perturbations on speakers’
voice input. In [16], Li et al. proposed to generate universal
adversarial perturbations (UAPs) by learning the mapping from
the low-dimensional normal distribution to the universal pertur-
bation subspace via a generative model. However, the afore-
mentioned adversarial examples are mostly restricted to make a
slight change of original signal in audio sampling points, with-
out considering the human perceptibility of sound.

In this study, we were inspired by the work in [10, 12] and
propose to generate inaudible adversarial perturbations for tar-
geted attacking speaker recognition directly on wave-level. We
use the structure of the x-vector speaker recognition system pro-
posed in [17] as our baseline to conduct targeted white-box at-
tacks. To generate the inaudible adversarial perturbations, we
adopt the frequency masking concept where one faint but audi-
ble sound becomes inaudible in the presence of another louder
audible sound. Our experimental results based on Aishell-1 [18]
corpus demonstrate that the inaudible adversarial perturbations
can achieve better targeted attack performance than previous lp
norm based adversarial examples. To further compare the fre-
quency masking based approach with previous ones, we also
evaluate them from both subjective and objective metrics. Re-
sults show that the adversarial perturbations generated by pro-
posed methods are more inaudible, even with larger absolute
energy. Finally, we attempt to conduct targeted attacks using
the music portion of the MUSAN corpus [19], which is a com-
pletely irrelevant non-speech dataset. Experiments show that
even non-speech can also achieve a high speaker attack success
rate.

The rest of the paper is organized as follows. In Section
2, we detail the generation of the inaudible adversarial pertur-
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Figure 1: An overview of the generation of adversarial examples based on frequency masking.

bations. In Section 3, we describe the experimental setup. Ex-
perimental results and analysis are presented in Section 4. We
conclude in Section 5.

2. Inaudible adversarial perturbations
In this section, we introduce how we generate the inaudible per-
turbations that can conduct targeted speaker attacks. Figure 1
shows an overview of the generation of adversarial examples
base on frequency masking.

2.1. Adversarial example generation

An adversarial example is defined as an instance with impercep-
tible, intentional perturbation that causes a well-trained model
to make a false prediction. Conventional approaches to gener-
ate adversarial perturbations are typically by performing gradi-
ent descent w.r.t the input sample. Specifically, given an input
speech x, its label speaker y, an arbitrary target label y′ and
a well-trained speaker recognition model f(·), the adversarial
perturbation δ can be generated by

minLCE(f(x+ δ), y′),

s.t. ‖δ‖ < ε,
(1)

where y′ 6= y and L(·) is the loss function. The hyperparameter
ε is used to control the maximum perturbation generated.

2.2. Frequency masking

Our goal is to generate indistinguishable adversarial perturba-
tions in the human perceptibility of audio, instead of maintain-
ing a slight noise to the clean speech sample points. In order
to achieve that, we utilize the idea of frequency masking, which
refers to the phenomenon that one faint but audible sound (the
maskee) becomes inaudible in the presence of another louder
audible sound (the masker) [20]. Therefore, we can modify ad-
versarial perturbations to be inaudible, as long as the perturba-
tion falls under the masking threshold of the original speech.
In [20], Lin et al. investigated the algorithm of computing
masking threshold, which consists of 3 steps.

STEP 1: Identifications of maskers

In order to obtain the frequency masking threshold of the
original speech, raw audio signals from the time domain are
first converted into time-frequency representations by short-
time Fourier transform (STFT). The output of STFT sx(k)
refers the k-th bin of the spectrum at frame x. Then, the power
spectral density (PSD) of sx(k) can be computed as

Px(k)/dB = 10 log10 |
1

N
sx(k)|2. (2)

After that, the PSD estimate Px(k) is normalized to a sound
pressure level (SPL) of 96 dB,

P x(k)/dB = 96−max{Px(k)}+ Px(k). (3)

The normalized PSD estimate of reasonable maskers must
satisfy three constraints. First is local maxima,

P x(k) ≥ P x(k) and P x(k) ≥ P x(k). (4)

Secondly, they should be larger than the absolute threshold of
hearing (ATH),

P x(k) ≥ ATH(k). (5)

Finally, any group of maskers should keep a maximum ampli-
tude within 0.5 Bark (a psychoacoustically-motivated frequency
scale) and only the masker with the highest SPL is retained,

P x1,x2(k) = arg max
k0∈[−0.5,0.5]

P x1,x2(k + k0). (6)

Since the masking effect is additive in the logarithmic do-
main, the SPL of each masker can be further smoothed by

P x(k) = 10 log10[10
Px(k−1)

10 + 10
Px(k)

10 + 10
Px(k+1)

10 ]. (7)

STEP 2: Calculation of individual masking thresholds

An individual masking threshold T [b(j), b(i)] means that
the masker at frequency index j contributes to the masking ef-
fect on the maskee at frequency index i, where b(j) and b(i) are
the masker and maskees frequencies in Bark scale. The individ-
ual masking thresholds can be calculated as:

T [b(j), b(i)]/dB = P x[b(j)] + ∆[b(j)] + SF[b(j), b(i)], (8)

where ∆[b(j)] = −6.025 − 0.275b(j) and SF[b(j), b(i)] is a
two-slop spread function.

STEP 3: Calculation of global masking threshold

After the individual masking thresholds are obtained, the
global masking threshold can be calculated by combining them
with the absolute threshold of hearing. The global masking
threshold at frequency index i is calculated according to

TG(i)/dB = 10 log10[10
ATH(i)

10 +

NM∑
j=1

10
[b(j),b(i)]

10 ], (9)

where ATH(i) is the SPL of threshold in quiet at frequency
index i, NM is the number of maskers, and T [b(j), b(i)] is cor-
responding individual masking threshold. Readers can get more
detail about the calculation of masking threshold in [20].



2.3. Optimization procedure

Given an input speech x, its label speaker y, an arbitrary target
speaker label y′, where y 6= y′, and a well-trained x-vector
speaker recognition model f(·), the additional loss function to
modify the perturbation fall under the masking threshold can be
defined as

LTH(x, δ) = Ek max{P δ(k)− TG(k), 0}, (10)

where P δ(k) means the normalized PSD estimated of δ at the
k-th frequency bin. The inaudible adversarial perturbation δ can
be generated by

minL(x, δ, y′) = LCE(f(x+ δ), y′) +α ·LTH(x, δ), (11)

where LCE aims to make the adversarial examples fool the
well-trained speaker recognition system into predicting an ar-
bitrary target label and the LTH constrains the normalized PSD
estimate of perturbation to be inaudible. The α is a hyper-
parameters to scale different losses.

The whole optimization procedure is separated into two
stages. In Attack Stage1, we focus on finding a relative small
perturbation using a common lp norm based algorithm as de-
fined in Eq. (1). The δ is initialized to a zero vector and ε is
gradually reduced from a large value. For each iteration, δ is
updated by

δ ← clipε(δ − lr1 · sign(∇δLCE(f(x+ δ), y′))). (12)

In Attack Stage2, we further optimize above perturbation by in-
troducing frequency masking based loss as defined in Eq. (11).
The α starts from 0.05 and adaptively updated based on the
performance of attack. For each iteration, δ is updated to be
inaudible through:

δ ← δ − lr2 · ∇δL(x, δ, y′). (13)

3. Experimental setup
3.1. Dataset

We use the Mandarin Aishell-1 corpus [18] as the evaluation
data set. The entire corpus contains 400 speakers (214 female,
186 male), sampled at 16kHz, including training, development
and test sets, without speaker overlapping. Training set is used
in x-vector baseline training, while test set is used to evaluate
the baseline system. For conducting inaudible adversarial tar-
geted attacks, we randomly choose 10 female speakers (denoted
as F) and 10 male speakers (denoted as M) from the training set,
each with 100 utterances, as the original speaker set. Another
10 female speakers (denoted as F’) and 10 male speakers (de-
noted as M’) are selected as the attack targets. We assign these
selected sets into 4 test modes. The first one is using 10 male
original speakers to attack 10 male target speakers, denoted as
M2M’. Similarly, the other three test modes are M2F’, F2M’
and F2F’.

Besides, we use the music portion of MUSAN [19] corpus
as our non-speech dataset, which consists of western art mu-
sic (e.g., Baroque, Romantic, and Classical) and popular genres
(e.g., jazz, bluegrass, hip-hop, etc). We randomly choose 200
pieces of western art music and cut them into 1000 pieces of 6
seconds short segments. This subset is used as the original wave
to attack the selected male target speakers.

3.2. Experimental setup

3.2.1. Baseline

We use x-vector system [17] as our baseline. The 30-
dimensional Mel-frequency cepstral coefficients (MFCC) fea-
tures are extracted as the input for all experiments. The con-
figuration of x-vector network is exactly the same as in [17]: a
5-layer TDNN with ReLU followed by batch normalization is
used for extracting frame-level hidden features. The number of
hidden nodes is 512 and the dimension of frame-level hidden
features for pooling is 1500. Each frame-level feature is gener-
ated from a 15-frame context of acoustic features. Pooling layer
aggregates frame-level features, followed by 2 fully-connected
layers with ReLU activation functions, batch normalization, and
a Softmax output layer. The EER of the x-vector baseline sys-
tem is 4.27%. Note that we use the whole sentence as input
instead of using chunks as in [17], because we need to compute
the gradient w.r.t the sentence-level perturbation.

After training the x-vector baseline system, we calculate
the speaker prediction for the original utterances with their true
labels. The accuracy for the M set is 95.9%, while the accuracy
for the F set is 97.9%. We also calculate the prediction accuracy
for the original utterances with assigned target speakers. All the
results of the four test modes are 0.00%.

3.2.2. Inaudible adversarial perturbations

We first compute the STFT of original speech to get the time-
frequency representations. The window type of STFT is the
modified Hann window with a length of 2048 and a hop length
of 512. In Attack Stage1, the learning rate lr1 is set to be 100
and the δ will be updated 3000 times for each mini-batch. We
use the l∞ norm to measure the perturbation bound. The ε starts
from 2000 and will multiply 0.8 when attacking successfully.
In Attack Stage2, the learning rate lr2 is 1 and the total training
step for each mini-batch is 1000. The scale parameter α begins
with 0.05 and will increase to 1.2αwhen attacking successfully
or decrease to 0.8α when fails. All systems are implemented
using PyTorch [21] and optimized by Adam optimizer [22].

3.2.3. Evaluation metrics

We use various metrics to measure the performance of proposed
method. First, we compute the attack success rate to evaluate
the performance of targeted attacks in speaker recognition. For-
mally, the accuracy is computed as:

Acc = Ns/N, (14)

where N is the total number of utterances we used to test and
Ns refers to the number of utterances attacking. Besides, per-
ceptual evaluation of speech quality (PESQ) [23] and signal-to-
noise ratio (SNR) are also computed to measure the distortion
of generated adversarial examples. Finally, we also conduct a
subjective evaluation to evaluate the adversarial examples from
the human perceptibility of audio. successfully.

4. Experimental results and analysis
4.1. Inaudible adversarial targeted attack

In Table 1, we calculate the attack success rate for all the four
test modes. As we separated the optimization procedure into
two stages in Section 2.3. We will test the adversarial exam-
ples generated in these two stages, donated as Attack Stage1
and Attack Stage2, respectively. System Attack Stage1 is we



Figure 2: Average PESQ and SNR (dB) comparison of Attack
Stage1 and Attack Stage2 on each test mode.

conduct attack using the adversarial examples generated in At-
tack Stage1, which just focus on finding a small perturbation.
And the targeted attack successfully affected the speaker model
in 72.6%, 73.8%, 73.3% and 71.3% of cases in these four
test modes. For System Attack Stage2, the frequency mask-
ing method is used in generating inaudible adversarial pertur-
bations. The rates of successful targeted attacks in four test
modes are 98.5%, 97.6%, 96.7% and 93.8%. In this experiment,
adversarial examples from both attack stages can successfully
conduct targeted speaker attacks. We can achieve a higher at-
tack success rate in System Attack Stage2, which indicates the
effectiveness of the inaudible adversarial perturbations in tar-
geted attacks.

Table 1: Attack success rate (%) of Attack Stage1 and Attack
Stage2 on each test mode.

System M2M’ M2F’ F2M’ F2F’

Attack Stage1 72.6 73.8 73.3 71.3
Attack Stage2 98.5 97.6 96.7 93.8

4.2. Objective evaluation and subjective listener evaluation

After conducting the attacks, we want to analyze the adversarial
examples from each attack stage. Fig. 2 shows objective perfor-
mance of the generated adversarial examples. We can observe
that the objective performance of the Attack Stage1 adversarial
examples is slightly better than Attack Stage2. The reason of
these results is frequency masking only hide the perturbation in
the masking threshold, but does not decrease the energy of the
perturbations of the adversarial examples. So we also perform
subjective test to evaluate the similarity of the adversarial exam-
ples and the original wave to find out whether the perturbations
generated in Attack Stage2 is inaudible to listeners.

To subjectively evaluate the performance of both attack
stages, we conduct ABX preference test. In our task, 20 utter-
ances pairs of are chosen randomly from the four test modes as

evaluation speech and each pair is judged by 30 participants.
The voices for comparison are separately the adversarial ex-
amples generated from Attack Stage1 and Attack Stage2. Par-
ticipants were asked to make judgement mainly according to
“which one is more similar to the original voice?”.

Table 2 summarizes the ABX test results. We can see that
the Attack Stage2 obtains better preference score than the At-
tack Stage1 (p-value<0.05). The result indicates that frequency
masking make the perturbations more inaudible when generat-
ing the adversarial examples, even with larger absolute energy.
Some samples of generated adversarial examples can be found
on this website1.

Table 2: Preference scores (%) of Attack Stage1 and Attack
Stage2.

Preference (%)
p-value

Attack Stage1 Neural Attack Stage2

11.33 20.00 68.67 0.0379

4.3. Non-speech targeted attack

We also use music as the original input to conduct the targeted
speaker attack. We match each utterance with a target speaker
label and measure the attack success rate. The result shows in
Table 3. We first use original music wave with target speaker
labels to test the system and get 0.00% of prediction accuracy.
After generating adversarial examples from Attack Stage1 and
Attack Stage2, we can achieve 77.0% and 91.5% attack success
rate, respectively. The experimental result demonstrates the at-
tacking effectiveness of the inaudible adversarial perturbations,
even applied to a completely irrelevant waveform.

Table 3: Attack success rate (%) of Attack Stage1 and Attack
Stage2 on non-speech dataset.

Before Attack Attack Stage1 Attack Stage2

Acc 0.00% 77.0% 91.5%

5. Conclusion
In this study, we have proposed to targeted attack the speaker
recognition system by generating inaudible adversarial pertur-
bations. In particular, the psychoacoustic principle of frequency
masking is used for the generation of adversarial examples. We
constrict the perturbation under the masking threshold of the
original audio, instead of a common lp distortion measures. Ex-
periments on Aishell-1 corpus show that our approach yields
up to 98.5% attack success rate to arbitrary gender speaker tar-
gets, while retaining indistinguishable attribute to listeners. In
subjective listener evaluation, the frequency masking based ad-
versarial perturbations have a 68.67% preference, which indi-
cates the frequency masking based adversarial perturbations are
more inaudible, even with larger absolute energies. Further-
more, the results demonstrate the effectiveness when applying
to non-speech data, such as music, to conduct targeted speaker
attacks.

In our future work, we will explore more challenging sce-
narios, both white-box and black-box targeted attacks and the
defenses of the adversarial examples. On-the-air targeted at-
tacks [15] and defenses also are within our future plan.

1https://pengchengguo.github.io/inaudible-advex-for-sv
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