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Abstract

Multi-speaker speech recognition has been one of the key
challenges in conversation transcription as it breaks the single
active speaker assumption employed by most state-of-the-art
speech recognition systems. Speech separation is considered
as a remedy to this problem. Previously, we introduced a sys-
tem, called unmixing, fixed-beamformer and extraction (UFE),
that was shown to be effective in addressing the speech over-
lap problem in conversation transcription. With UFE, an input
mixed signal is processed by fixed beamformers, followed by a
neural network post filtering. Although promising results were
obtained, the system contains multiple individually developed
modules, leading potentially sub-optimum performance. In this
work, we introduce an end-to-end modeling version of UFE. To
enable gradient propagation all the way, an attentional selection
module is proposed, where an attentional weight is learnt for
each beamformer and spatial feature sampled over space. Ex-
perimental results show that the proposed system achieves com-
parable performance in an offline evaluation with the original
separate processing-based pipeline, while producing remark-
able improvements in an online evaluation.
Index Terms: multi-channel speech separation, robust speech
recognition, speaker extraction, source localization, fixed beam-
former

1. Introduction
Deep learning approaches have brought about remarkable
progress to speaker-independent speech separation in the past
few years [1, 2, 3, 4]. The separated signal quality has
been steadily improved on benchmark datasets such as WSJ0-
2mix [2]. However, multi-talker speech recognition still re-
mains to be a challenging problem.

Speech separation is a common practice to handle the
speech overlaps. Existing efforts in overlapped speech recog-
nition can be roughly categorized into two families: building a
robust separation system as a front-end processor to automatic
speech recognition (ASR) tasks [5, 6, 7, 8, 9, 10, 11] or develop-
ing multi-talker aware ASR models [12, 13, 14, 15, 16, 17, 18].
Although better performance can be expected from the end-to-
end training including ASR, the independent front end process-
ing approach is often preferable in real world applications such
as meeting transcription [19] for two reasons. Firstly, in the
conversation transcription systems, the front end module bene-
fits multiple acoustic processing components, including speech
recognition, diarization, and speaker verification. Secondly,
commercial ASR models are usually trained with a tremendous
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amount of data and is highly engineered, making it extremely
costly to change the training scheme.

The recent work of [19] applied speech separation to a real-
world conversation transcription task, where a multi-channel
separation network, namely speech unmixing network, trained
with permutation invariant training (PIT) [1] continuously sep-
arates the input audio stream into two channels, ensuring each
output channel only contains at most one activate speaker.
A mask-based adaptive Minimum Variance Distortionless Re-
sponse (MVDR) beamformer was used for generating enhanced
signals. In [20], a fixed beamformer based separation solu-
tion was introduced, namely the unmixing, fixed-beamformer
and extraction (UFE) system. The mask-based adaptive beam-
former of the speech unmixing system is replaced by a pro-
cess selecting two fixed beamformers from a pre-defined set of
beamformers by using a sound source localization (SSL) based
beam selection algorithm. This is followed by the speech ex-
traction model introduced in [8] to filter the residual interfer-
ence in the selected beams. The UFE system has comparable
performance with MVDR-based approach, with reduced pro-
cessing latency.

One limitation of the UFE system lies in its modularized op-
timization, where each component is individually trained with
an indirect objective function. For example, the signal recon-
struction objective function used for speech unmixing does not
necessarily benefit the accuracy of UFE’s beam selection mod-
ule. As a subsequent work of [20], in this paper, we propose
a novel end-to-end structure of UFE (E2E-UFE) model, which
utilizes a similar system architecture to UFE, with improved
performance thanks to end-to-end optimization. To enable joint
training, several updates are implemented on the speech unmix-
ing and extraction networks. We also introduce an attentional
module to allow the gradients to propagate though the beam
selection module, which was non-differentiable in the original
UFE. The performance of the E2E-UFE is evaluated in both
block online and offline setups. Our experiments conducted on
simulated and semi-real two-speaker mixtures show that E2E-
UFE yields comparable results with the original UFE system in
the offline evaluation. Significant WER reduction is observed
in the block online evaluation.

2. Overview of UFE System
The outline of the UFE pipeline is depicted in Figure. 1, which
consists four major components, the fixed beamformer, mask
based sound source localization (SSL), speech unmixing net-
work and location based speech extraction network.

In UFE, the M -channel short-time Fourier transform
(STFT) of the input speech mixture Y0,··· ,M−1 =
{Y0, · · · ,YM−1} is firstly processed by the speech unmixing
module, where a time-frequency mask (TF mask) is estimated
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Figure 1: Overview of the UFE system. The grey block is an
neural network trained independently.

for each participating speaker. In this work, we set the maxi-
mum number for simultaneously talking speakers to two so two
masks M0,1 ∈ RT×F are generated by unmixing network. The
speech unmixing module is trained with permutation invariant
training (PIT) criteria with scaled-invariant signal-to-noise ratio
(Si-SNR) [21] objective function:

L = −max
φ∈P

∑
(i,j)∈φ

Si-SNR(si,xj), (1)

where P refers all possible permutations, xj is the clean refer-
ence of speaker j, and si refers the separated signal of speaker
i, which is obtained via inverse short-time Fourier transform
(iSTFT):

si = iSTFT (Mi �Y0) . (2)

Then the sound source localization module is applied to es-
timate the spatial angle for each separated source with weighted
maximum likelihood estimation [20]. The direction of the i-th
speaker is estimated via finding a discrete angle θ sampled from
0◦ to 360◦ that maximizes the following function:

Dθ,i = −
∑
t,f

Mi,tf log

(
1−
|yHt,fhθ,f |2

1 + ε

)
(3)

where hθ,f is the normalized steer vector on each frequency
band f for source direction θ, ε refers a small flooring value,
and t denotes frame index in STFT.

With the estimated direction, one beamformer is then se-
lected for each source from a set of pre-defined beamformer,
defined as wn,f ∈ CM×1, where n indexes the beam and each
beam has an center angle that is sampled uniformly across the
space, and the beamformed signal on each time-frequency bin
is obtained by Eqn. 4

bi,t,f = wH
i,fyt,f , (4)

where yt,f = [Y0,tf , · · · ,YM−1,tf ]T .
Finally, the location based speech extraction [8] is applied

on each selected beam, and estimates the TF mask based on
the input of the beam spectrogram, the inter-microphone phase
difference (IPD) and the angle feature [8, 22]. The angle feature
on frequency band f is computed as

aθ,f =
1

P

∑
i,j∈ψ

cos(oij,f −∆θ,ij,f ), (5)

where ψ contains P microphone pairs and and oij,f = ∠yi,f−
∠yj,f represents the observed IPD between channel i and j.
∆θ,ij,f is the ground truth phase difference given the direction
of arrival θ and array geometry. The final output signal is ob-
tained via applying the TF masking on corresponding selected
beam, followed by iSTFT.

As fixed beamformer doesn’t need to estimate filter coef-
ficients based on input data, it has the potential achieve low

latency processing and more robust performance in challenge
acoustic environments. And the speech extraction network
compensates the limitation in spacial discrimination in fixed
beamformer.

3. End-to-end UFE
The proposed end-to-end UFE system is depicted in Figure 2.
The overall system workflow is similar to original UFE, while
the E2E framework largely simplifies the whole process. The
proposed system takes the multi-channel recording as input, and
directly outputs two separated speech. A single objective func-
tion on the top of the network is used to optimize all parameters.

In original UFE, three components are non-differentiable,
which are SSL module, beam selection module and angle fea-
ture extraction. To ensure the joint training, we introduce up-
dates to each component.

3.1. Pre-separation layer

In E2E framework, the permutation ambiguity is handled in the
final objective function, the unmixing module in UFE reduces to
a stack of pre-separation layers. Same as the original UFE, the
network takes the IPD and spectrogram of first channel record-
ing as input feature. The pre-separation layers consists of a
stack of recurrent layers, followed by H linear projection lay-
ers. Here we use H = 2 as we consider at most 2 speakers in
this paper. After processed by pre-separation layers, an interme-
diate representation E ∈ RH×T×K is formed whereK denotes
the embedding dimension. We refer E as the “pre-separation
mask” in later context.

3.2. Attentional selection

To avoid the hard angle selection in sound source module, i.e.
Eqn. 3. An attention module is applied in E2E-UFE system,
which consists of a pool of beamformed signal and angle fea-
ture, followed by an attentional selection to estimate the loca-
tion based bias for final extraction layers.

3.2.1. Spatial feature pool

The spatial feature pool is formed by stacking the spatial feature
pointing to different directions. Two pools are formed, one for
fixed beamforming and the other for angle feature. For beam
pool B ∈ CNb×T×F , we calculate the spectrogram of signal
obtained though all pre-defined fixed beamformer. In this work,
we use Nb = 18 beamformers to scan the horizontal space,
i.e., 20 degree is covered by each beamformer. The angle fea-
ture pool A ∈ RNa×T×F are formed similarly, with Na = 36
directions.

Note that in original UFE, only the beam and angle feature
corresponding to the selected angle are calculated, while the
E2E UFE calculates beamformed signal and angle feature from
all directions beforehand, resulting in an increased computation
burden. But this also open the possibility of jointly optimize
the beamformer and the angle feature, as suggested in [23], as
they are now part of the network. In this work, we freeze the
beamformer filter coefficients and angle feature representation.
The complex operation in beamforming is implemented using
the multiplication of two real matrices [24].

3.2.2. Attentional beam & angle selection

With pre-separation mask E, beam pool B and angle feature
set A as input, an attention selection module is implemented to
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Figure 2: Overview of the E2E-UFE system (left) and scheme of the attentional beam selection (right). AF and FB are abbreviation of
the angle feature and fixed beamformer, respectively. The extraction layers accept both of the weighted beam and angle feature.

form the location based acoustic bias for each source. The in-
tuition for the attention selection is straightforward, where one
attention weight is estimated for each beam and angle feature,
based on their learnt similarity with pre-separation representa-
tions, followed by a weighted sum to form the final beam and
angle feature that are sent to the final extraction layers. In more
detail, the attention module is operated in four steps. We use the
beam attention as example for illustration, while the selection of
angle feature operates in the same manner. The corresponding
scheme is depicted in Figure. 2.

Firstly, the pre-separation mask and beam pool are pro-
jected using two linear layers:

VP = EWp, (6)

VB = |B|Wb, (7)

where Wp ∈ RK×D and Wb ∈ RF×D are projection layer
weights that convert the pre-separation mask and beam pool into
the same dimension D, resulting updated embedding matrices
VP ∈ RH×T×D and VB ∈ RNb×T×D .

Then a pair-wised similarity matrix is defined between each
frame in VP and VB using dot product distance, scaled by
(
√
D)−1. Averaging the similarity matrix along the time axis

resulted in beam selection for different time resolution, which is
passed by the softmax function to generate the final weight. In
Eqn. 8, sh,b,t is the similarity score between h-th pre-separation
mask and b-th beam at time t, ŝh,b refers the time averaged
weights and wh,b is the final attention weight for each beam.
Finally, the weight average operation is performed in order to
get the combined beam B̂h for h-th speaker, as shown in the
Eqn. 11.

sh,b,t = (
√
D)−1

(
VP
h,t

)T
VB
b,t (8)

ŝh,b = (T )−1
∑
t

sh,b,t, (9)

wh,b = softmaxb(ŝh,b), (10)

B̂h =
∑
b

wh,bBb. (11)

The combined angle feature Âh can be calculated with the
same mechanism. The proposed attention module connects the
special feature, pre-separation and the later extraction step, en-
suring the gradient can be passed in an end-to-end optimization
scheme. Note that, the averaging step in Eqn. 9 can be adjusted
according to different application scenarios. For offline process-
ing, averaging over entire utterance usually leads to more robust
estimation, assuming the position of the speaker is not changed.

While averaging only based on past information is more desir-
able for online processing. The same mechanism can be applied
with the other information as well, e.g., speaker inventory [25]
or visual clues, etc.

3.3. Joint speech extraction

The combined beam and angle feature estimated via the atten-
tional selection module are processed by the extraction layers.
The extraction layers have essentially the same structure as the
original UFE, except that the PIT training criteria is required
as the permutation ambiguity is not disentangled by unmixing
module in E2E framework. We use the clean source from the
ground truth beam selection as training target, so both beam
selection and wave reconstruction will be optimized with one
objective function. Denoting ri as the training target for the
speaker-i, the objective function is given in a permutation-free
form:

L = −max
φ∈P

∑
(i,j)∈φ

Si-SNR(si, rj), (12)

where the si is the network’s estimation of the speaker-i.

4. Experiments
4.1. Dataset

The proposed system was trained with multi-channel artificially
mixed speech. A total of 1000 hours of training speech data was
generated. Source clean speech signals were taken from pub-
licly available datasets, including LibriSpeech1 [26], Common
Voice2, as well as Microsoft internal recordings. Seven-channel
signals were simulated by convolving clean speech signals with
artificial room impulse responses (RIRs) generated with the im-
age method [27]. We used the same microphone array geometry
as the one used in [20]. The T60 reverberation times were uni-
formly sampled from [0.1, 0.5] s with a room size of [2,20] m
in length and width and [2,5] m in height. The speaker and mi-
crophone locations were randomly determined in the simulated
rooms. Simulated isotropic noise [28] was added to each mix-
ing utterance at an SNR sampled from [10, 20] dB. We made
sure each speech mixture contained one or two speakers, with
the mixing SNR between [-5, 5] dB and an average overlapping
ratio of 50%. All the data had a sampling rate of 16 kHz.

Two test sets were created for model evaluation. The first
test set was created by using the same generation pipeline as
the one for the training data, denoted as the simu test set, which
amounts to 3000 utterances. The speakers were sampled from
the test-clean set in LibriSpeech. There was no shared speakers

1http://www.openslr.org/12/
2https://voice.mozilla.org/en
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Table 1: WER (%) performance in the offline evaluation.

Method simu semi-real
OV35 OV75 OV35 OV75

Mixed Beam 67.40 52.40 70.92 57.63
Clean Beam 10.67 10.56 20.34 19.71

UFE 16.44 18.55 35.60 37.54

E2E-UFE 16.85 18.98 33.89 35.92

in the training and test sets. The second test set was generated
by directly mixing our internal real recorded multi-channel sin-
gle speaker signals. 2000 mixed utterances were created with
the same mixing strategy as in the training set, except that no
scaling was applied on the source signals. We refer to this set
as the semi-real test set. For each set, we created two overlap-
ping conditions, whose overlap ratio ranged from 20—50% or
50–100%. We denote these two condition as OV35 and OV75,
respectively.

4.2. Baseline systems

The original UFE system served as the baseline of the pro-
posed E2E architecture. We observed that when trained with
the PIT criterion, the extraction model of UFE yielded signifi-
cantly better results. Therefore, we used PIT-trained extraction
in our UFE baseline. For reference, we included the results ob-
tained with the fixed beamforming system applied directly to
speech mixtures (Mixed Beam) and those obtained by applying
the same beamformers to the clean utterances (Clean Beam),
where the beams were selected based on oracle direction of ar-
rival information.

4.3. Training scheme

In the proposed E2E-UFE framework, both extraction and un-
mixing layers consisted of three contextual LSTM layers [29],
each with 512 nodes and a dropout rate of 0.2. For better conver-
gence, the unmxing and extraction networks were pre-trained
individually before joint optimization. The same model archi-
tecture for unmixing and extraction was used for the UFE base-
line. The log magnitude spectrum with an FFT size of 512 and
a hop of 256 samples was used as spectral features for all net-
works. For the unmixing network, cosIPDs between three mi-
crophone pairs (1, 4), (2, 5), (3, 6) were extracted.

We used Adam optimizer and train both the networks for
a maximum of 80 epochs with a weight decay value of 1e−5.
The early stopping strategy was used to avoid over-fitting. Ini-
tial learning rate was set to 1e−3 and halved if no validation im-
provement was observed for two consecutive epochs. For joint
training in E2E-UFE, a smaller learning rate 1e−4 was used for
fine tuning.

4.4. Evaluation scheme

All systems were evaluated in offline and block online setups.
In the offline evaluation, the system was allowed to use the in-
formation from an entire utterance. That is, SSL and attentional
selection, i.e., Eqn. 3 and 8, respectively, were performed by
using averages over the whole utterance. In the block online
processing, a double buffering [20] scheme was applied, where
each system estimated the output block-wisely through time.
Each evaluation block contained a two second window, with
additional two or four second history information. The hop be-
tween two evaluation block was two seconds, resulting in an

Table 2: WER (%) performance in the online evaluation.

Method (history) simu semi-real
OV35 OV70 OV35 OV70

UFE (2s) 24.10 31.40 44.05 45.13
UFE (4s) 23.66 28.85 43.49 44.06

E2E-UFE (2s) 17.50 19.43 38.64 39.98
E2E-UFE (4s) 17.09 19.10 36.67 39.11

average latency of one second.
The word error rate (WER) was used as a performance met-

ric. The ASR pipeline we used for decoding included a tri-gram
language model and an acoustic model consisting of six layers
of 512-element layer trajectory LSTM [30]. The acoustic model
was trained with maximum mutual information (MMI) [31] on
30k hours of noise-corrupted data.

4.5. Results

The offline evaluation results are shown in Table 1. The simple
fixed beamforming (Mixed Beam) yielded a high WER even
though it used the oracle DoA. The result of the clean beam sets
the upper bound to the UFE performance. The proposed E2E-
UFE system achieved comparable performance as the original
UFE for the simulated data set, while demonstrating a clear per-
formance advantage in semi-real the semi-real set, showing the
efficacy of the end-to-end training scheme. Overall, E2E-UFE
achieved 4.8% and 4.3% relative WER reduction over the UFE
system on OV35 and OV75 of the semi-real, respectively, reach-
ing 33.89% and 35.92% WERs.

Table 2 shows the block online evaluation results. E2E-
UFE shows robustness for different look-back configurations (a
2s or 4s history context), achieving slightly worse results than
for the offline evaluation on both datasets. On the simu set,
E2E-UFE showed no significant degradation compared with the
offline performance. It achieved lower WERs than the original
UFE. On the semi-real set, it brought about a 12.47% average
relative WER reduction compared with the UFE system using a
2 s history context, while on the simu set, the relative reduction
increases to 29.71% . By contrast, the original UFE resulted
in a much larger performance degradation for the online eval-
uation, degrading from 16.44/18.55% to 24.10/31.40% on the
simu set and 35.60/37.54% to 44.05/43.15% on the semi-real
set. One hypothesis for the robustness of E2E-UFE is that, dur-
ing training, the E2E-UFE model already optimized for wrong
beam selections, while for the original UFE, only the correct
beams were selected as input. Another potential reason could
be that the sparification trick in [20] was not applied in either
UFE or E2E-UFE, which might result in more energy leakage
for UFE system, while E2E-UFE system doesn’t suffer from
this problem as all modules are jointly optimized.

5. Conclusion
In this paper, we proposed an end-to-end structure of multi-
channel speech separation, named E2E-UFE, for robust ASR.
It replaces the SSL module in the previously proposed UFE
system with a small attention network and enables joint opti-
mization of the unmixing and extraction networks. The experi-
ments were conducted on two 2-speaker datasets (simulated and
semi-real mixtures) and the performance was evaluated for both
offline and online settings. The experimental results showed
that E2E-UFE provided comparable performance with the UFE
system in the offline situations and yielded an average relative
WER reduction of 12.47% on block online processing.
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