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Abstract
Previous research has proposed a machine speech chain to en-
able automatic speech recognition (ASR) and text-to-speech
synthesis (TTS) to assist each other in semi-supervised learn-
ing and to avoid the need for a large amount of paired speech
and text data. However, that framework still requires a large
amount of unpaired (speech or text) data. A prototype multi-
modal machine chain was then explored to further reduce the
need for a large amount of unpaired data, which could improve
ASR or TTS even when no more speech or text data were avail-
able. Unfortunately, this framework relied on the image re-
trieval (IR) model, and thus it was limited to handling only those
images that were already known during training. Furthermore,
the performance of this framework was only investigated with
single-speaker artificial speech data. In this study, we revamp
the multimodal machine chain framework with image genera-
tion (IG) and investigate the possibility of augmenting image
data for ASR and TTS using single-loop and dual-loop archi-
tectures on multispeaker natural speech data. Experimental re-
sults revealed that both single-loop and dual-loop multimodal
chain frameworks enabled ASR and TTS to improve their per-
formance using an image-only dataset.
Index Terms: multimodal machine chain, single-loop and dual-
loop architecture

1. Introduction
Machines need to learn how to listen or speak in order to
communicate with humans. Traditionally, learning to lis-
ten and speak is done through the development of automatic
speech recognition (ASR) and text-to-speech synthesis (TTS)
that are trained separately and independently using a supervised
method. Such training requires a large amount of paired data
consisting of speech and corresponding transcriptions, which is
often unavailable. When the training is finished, the machine is
only able to speak or listen to others, but it still cannot hear its
own voice.

Humans, by contrast, have a closed-loop speech chain
mechanism with auditory feedback from a speaker’s mouth to
her ears [1]. By simultaneously listening and speaking, the
speaker can monitor her volume and articulation and can im-
prove the general comprehensibility of her speech. Further-
more, overall human communication channels include not only
auditory channels but also visual channels. Having multiple
information sources that are perceived together builds general
concepts and understanding.

Inspired by this human mechanism, a machine speech chain
based on deep learning [2, 3, 4, 5] was previously proposed to
create a machine that can learn not only to listen or speak but
also to listen while speaking. The advantages of the framework
shown in Fig. 1(a) are that it enables ASR and TTS to assist
each other in semi-supervised learning and it avoids the need

for a large amount of paired speech and text data. However, the
framework still requires a large amount of unpaired (speech or
text) data.

A multimodal machine chain [6] was then proposed to
mimic overall human communication and accommodate a vi-
sual modality on top of speech and text modalities. This frame-
work (see Fig. 1(b)) with a dual-loop architecture consists of:
(1) the original speech chain with ASR and TTS; and (2) an ad-
ditional visual chain component with image captioning (IC) and
image retrieval (IR). The results revealed that this framework
further reduced the need for unpaired data, as it could improve
ASR or TTS even when no more speech and text data were
available. However, as the framework relied on the IR model,
it could only handle those images that were already known dur-
ing training. Another limitation was that the performance was
only investigated on single-speaker synthesized speech data that
were generated using Google TTS.

In this study, we revamp the multimodal machine chain
with image generation (IG). We also explore an alternative
single-loop mechanism with a multisource architecture (see
Fig. 1(c)), based on the assumption that humans do not separate
audio and visual information when perceiving it. Furthermore,
we investigate the performance of the proposed framework on
multispeaker natural speech data and show the possibility of
augmenting image data for further enhancing ASR and TTS.
Here, the upgraded dual-loop multimodal chain is denoted as
MMC1, and the new single-loop multimodal chain is denoted
as MMC2.

2. Multimodal Machine Chain
2.1. Overview
The architecture of MMC1 is similar to the one illustrated in
Fig. 1(b) but replacing the IR with IG. The new MMC2 frame-
work, shown in Fig. 1(c), merges the speech chain and visual
chain into a single-loop mechanism. Consequently, ASR and
IC are now combined into ImgSp2Txt with a dual-decoder so
that the mechanism can disambiguate input using the fusion of
image and speech. MMC2 provides a more compact architec-
ture than MMC1, and with only one loop chain, the framework
is similar to the original architecture of the machine speech
chain. Our motivation in proposing MMC2 is to show that
the multimodal chain training strategy can also be applied for
a multi-source multimodal model such as audio-visual ASR
(ImgSp2Txt).

There are various ways to train MMC1 and MMC2 depend-
ing on the availability of the data, including speech (x), text
(y), and images (z) in paired (P) or unpaired (U) conditions.
When all paired data (speech-image-text) are available, all com-
ponents (ImgSp2Txt, ASR, IC, TTS, and IG) can be trained
independently in supervised training by minimizing the loss
between their predicted target sequence and the ground truth
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Figure 1: Architecture: (a) machine speech chain [3], (b) previous multimodal machine chain [6] (MMC1) and (c) proposed multimodal
machine chain (MMC2).

sequence. However, when only unpaired data are available,
ImgSp2Txt, ASR, IC, TTS, and IG need to assist each other
in unsupervised training through a loop connection. To further
clarify the learning process during unsupervised training in the
MMC1 and MMC2 frameworks, we unrolled the architecture to
describe the training mechanism:
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Figure 2: Unrolled process from speech and/or image to text in
(a) MMC1 and (b) MMC2.

Given only speech x and/or image z data (without any
corresponding transcription y), in MMC1 two separate
unrolled processes are needed for the speech chain and
the visual chain (see Fig. 2(a) left and right, respec-
tively). In contrast, with MMC2, the unrolled process
from speech and/or image to text can be done simulta-
neously (see Fig. 2(b)). ImgSp2Txt transcribes the input
of either {xz, x, z} into text ŷ. This generated text is
then used by TTS to synthesize speech x̂ and/or by IG
to generate an image ẑ. By comparing both the origi-
nal and the predicted results, TTS and IG parameters can
be updated with backpropagation by minimizing the loss
LTTS(x, x̂) and LIG(z, ẑ), respectively.

x̂ = TTS(ImgSp2Txt(x, z)) (1)

ẑ = IG(ImgSp2Txt(x, z)) (2)
θTTS = Optim(θTTS ,5θTTSLTTS(x,x̂)) (3)

θIG = Optim(θIG,5θIGLIG(z,ẑ)) (4)

2. Text to Speech and/or Image
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Figure 3: Unrolled process from text to speech and/or image in
(a) MMC1 and (b) MMC2.

Here, only text y is available, but none of the speech
x and image z data are available. In such a condition,

speech x̂ can be generated using TTS and image ẑ can
be generated using IG. In the MMC1 framework as il-
lustrated in Fig. 3(a), the predicted speech x̂ and im-
age ẑ are used separately by the ASR in the speech
chain and the IC in the visual chain, respectively. By
contrast, in the MMC2 framework shown in Fig. 3(b),
ImgSp2Txt can use both predicted speech x̂ and image ẑ
together and decode a text hypothesis ŷ. By measuring
the reconstruction loss between y and ŷ, ImgSp2Txt pa-
rameters are updated with backpropagation, and the loss
LImgSp2Txt(y, ŷ) is minimized.

ŷ = ImgSp2Txt(TTS(y), IG(y)) (5)

θImgSp2Txt = Optim(θImgSp2Txt,5θImgSp2TxtLImgSp2Txt(y,ŷ))

(6)

2.2. Multimodal Chain Components

LSTM LSTM LSTM...
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... Dual 
text 
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attention attention

Figure 4: Dual text-decoder that combines audio and visual in-
formation.

The MMC1 framework has four components: (1) ASR-
based on ‘Listen, Attend, and Spell (LAS)’ architecture [7]; (2)
TTS-based Tacotron [8] with slight modification as previously
reported [3]; (3) Attentional-based IC model [9]; and (4) IG, in
which, in this study, attentional generative adversarial networks
(AttnGAN) [10] are used.

By contrast, in the MMC2 framework, instead of having
ASR and IC, a sequence-to-sequence ImgSp2Txt with dual-
decoder is used to perform audiovisual to text tasks (see Fig. 4).
Here, the speech encoder consists of a bidirectional LSTM that
encodes Mel-spectrogram [x0..xn] into encoded representation
[h0..hn], and the image encoder produces high-level feature
representation [r0..rm] based on a residual network (ResNet)
[11]. Then, the dual text decoder dxt and dzt attend the [h0..hn]
and [r0..rm] respectively. During training, when both image
and speech are available, the calculation of the LImgSp2Txt
loss are calculated by taking average of both pxt and pzt out-
put layer probability. However, when only images or speech
are available, then the decoder uses only the corresponding out-
put layer. Note that, compared with IC, the image captioning
in ImgSp2Txt works at the character level to follow the best
practices in ASR.



The TTS and IG components on MMC2 are the same as in
MMC1. In addition, as the performance will be investigated on
multispeaker natural speech data, we constructed an additional
element for speaker recognition (SPKREC), which is based on
DeepSpeaker [12]. To handle unseen speakers, the TTS will
perform one-shot speaker adaptation as previously reported [4].

In practice, to reduce memory usage, both IC and IG used
only a 128x128 image size. SPKREC followed the original
hyper-parameters in the previous paper [4], except the embed-
ding size was reduced from 128 to 64. We decoded all hypothe-
ses during semi-supervised training and testing using a beam
size of three. We used an Adam optimizer with a learning rate
of 1e-4 for the ASR, ImgSp2Txt, and IC models, 2.5e-4 for the
TTS model, and 2e-4 for the IG model.

3. Experimental Set-up
We ran our experiment with the Flickr8k dataset [13], which has
8000 photos of everyday activities, events, and scenes. Each im-
age has five captions that describe the image with a vocabulary
of 8920 words. Harwath and Glass (2015) [14] extended this
corpus using Amazon Mechanical Turk to collect 40000 corre-
sponding examples of natural speech by 183 different speakers
for a total of 64 speech hours.

The Flickr8k data is commonly divided into 6k training im-
ages, 1k validation images, and 1k test images. In an ideal situa-
tion, 6k images with corresponding five captions and five speech
utterances for each image can be used for training. However,
in reality, a large amount of paired data is often unavailable.
Therefore, in this study, we investigated the capability of our
proposed framework given a non-ideal situation. We formu-
lated training sets, as listed in Table 1. Among the 6k data, only
800 units had complete speech+image+text paired data. In an-
other 1500 units, there were speech, image, and text data, but
they were unpaired or not related to each other. Then, in the re-
maining data, 1850 units had only speech utterances, and 1850
units had only image data.

Despite having such limited data, our proposed framework
could use all of those data in a semi-supervised setting. First,
we trained all model components independently in supervised
training with 800 (speech+image+text) paired units. Then,
we further enhanced the performance and continued the train-
ing process using the 1500 multimodal (speech/image/text) un-
paired data. Here, those model components needed to support
each other in unsupervised training through a loop connection,
as described in Section 2.1. Specifically, we performed two un-
rolled processes separately: (1) speech/image to text, and (2)
text to speech/image. In MMC1, this training step is equiva-
lent to the training speech chain (ASR and TTS) and the vi-
sual chain (IC and IG) separately (see Fig. 2(a) and Fig. 3(a)).
But, in MMC2, this training step is a semi-supervised single
loop chain between ImgSp2Txt, TTS, and IG (see Fig. 2(b) and
Fig. 3(b)). Finally, given the remaining single modality data
(1850 units with speech only or 1850 units with image only), we

Table 1: Training data partition for Flickr8k with three con-
ditions: (1) available paired data, denoted as©, (2) available
but unpaired data, denoted as N, and unavailable data, denoted
as ×. Each image has five captions and five speech utterances.

Dataset Speech Text Image # Image
x y z

Multimodal (Paired) © © © 800
Multimodal (Unpaired) N N N 1500
Speech only (Unpaired) N × × 1850
Image only (Unpaired) × × N 1850

further trained the components by using both unrolled processes
together. We performed the speech/image to text unrolled pro-
cess, and we then used the predicted text to perform the text to
speech/image unrolled process. This way, we were still able to
enhance ASR and TTS given only image data. Such a mech-
anism cannot be done with the original machine speech chain.
As a comparison, we also performed another semi-supervised
technique, the label propagation method [16]. Here, we used
the initial models to generate the missing information and re-
trained the model using supervised learning.

For evaluation metrics, we measured the performance of the
ASR using a character error rate or word error rate (CER/WER),
and a bilingual evaluation understudy (BLEU) [17] for the IC,
which compares matching n-grams between a hypothesis and a
reference sentence (higher being better). Specifically, we used
BLEU4 with 4-grams, denoted as ‘B4’. We also used both met-
rics for the ImgSp2Txt model in MMC2, which received image
and speech inputs together. TTS was evaluated based on L2-
norm2 (denoted as ‘L2’) error between ground-truth and pre-
dicted speech (lower being better), while IG was assessed with
the inception score (IS) [18] to measure how realistic the IG
output was (higher being better).

4. Experiment Results
4.1. Large amount of paired data
First, we evaluated the performance of the components when
a large amount of paired data existed, as compared with the
existing published results, on a well-known dataset. In this
case, all components were trained independently using super-
vised training. However, in the previous publication of MMC1
[6], we showed that our ASR, TTS, and IC components could
provide comparable performance to methods shown in other ex-
isting published papers. Since we used the same architectures
and parameters for those components, we won’t repeat the eval-
uation here. The main difference is that the current research
uses IG and ImgSp2Txt. For the IG task, we assessed using the
Caltech-UCSD Birds-200-2011 (CUB) dataset [19], while for
the ImgSp2Txt task, we evaluated the performance of our mod-
els on the Flickr8k set [13]. Our IG model, which had a 5.67
inception score, performed better than AttnGAN [10], which
had a score of only 4.36. Furthermore, our ImgSp2Txt results
also exceeded those of Sun et al. [15], who used a lattice rescor-
ing algorithm. These results confirmed that in a fully supervised
scenario, our models work well or even better than those from
previously published papers.

4.2. Limited amount of paired data
As described in Sec. 2.1 and Sec. 3, given a limited amount
of paired data, we first trained all model components indepen-
dently in supervised training with paired units. In the label
propagation method [16], we used the initially trained models
to generate the missing information in unpaired data (i.e., given
speech data only, ASR produced the text transcription and cre-

Table 2: Our IG and ImgSp2Txt performances compared with
existing published results.

Data Model Result
IG - IS (%) ↑

CUB Xu et al. [10] 4.36
Ours (MMC1) 5.67
Ours (MMC2) 5.67

ImgSp2Txt - CER / WER (%) ↓
Flickr8k Sun et al. [15] - / 13.81

Ours (MMC1) 5.76 / 9.76
Ours (MMC2) 5.16 / 7.13



Table 3: Performance of proposed MMC1 and MMC2 compared with label propagation method in Flickr8k dataset based on training
set-up in Table 1 (P=paired data; U=unpaired data). The last line is the topline system when the 6k images with the corresponding five
captions and five speech utterances for each image are available.

Training Data Type #Image
MMC1 MMC2

ASR IC TTS IG ImgSp2Txt TTS IG
CER↓ B4↑ L22↓ IS↑ CER↓ B4↑ L22↓ IS↑

Label Propagation I Multimodal (P) 800 36.35 12.75 0.77 5.90 26.67 32.23 0.77 5.90
(Semi-Supervised) + Multimodal (U) 1500 39.57 12.53 0.77 7.04 27.45 33.59 0.77 7.04

+ Sp only (U) 1850 46.04 - 0.63 - 28.87 35.75 0.63 -
+ Img only (U) 1850 - 11.41 - 7.20 30.31 35.38 - 7.20

Label Propagation II Multimodal (P) 800+α 15.52 15.10 0.64 7.25 13.54 57.63 0.64 7.25
Plus α = 600 + Multimodal (U) 1500-α 15.36 15.63 0.62 7.82 13.22 58.66 0.62 7.82

(Semi-Supervised) + Sp only (U) 1850 15.28 - 0.55 - 14.36 59.36 0.55 -
+ Img only (U) 1850 - 15.86 - 8.86 15.24 58.69 - 8.86

Proposed Multimodal (P) 800 36.35 12.75 0.77 5.90 26.67 32.23 0.77 5.90
Multimodal Chain + Multimodal (U) 1500 15.10 13.22 0.59 8.29 14.88 55.15 0.65 10.12
(Semi-Supervised) + Sp only (U) 1850 12.37 13.28 0.56 9.12 13.81 58.03 0.62 10.65

+ Img only (U) 1850 12.06 13.29 0.56 9.11 12.32 59.66 0.61 9.95
Topline (Supervised) Multimodal (P) 6000 5.76 19.91 0.50 9.66 5.16 79.88 0.50 9.66

ated new pair data). After that, we retrained all models again
independently using the new pair data with supervised learning.
In contrast, in the proposed MMC1 and MMC2 frameworks, we
used the initially trained models within a chain framework and
enabled them to support each other, given unpaired data.

Table 3 shows the performance of the proposed MMC1 and
MMC2 frameworks in comparison with the label propagation
method in the Flickr8k dataset based on the training set-up listed
in Table 1. ‘Label Propagation I’ has the same amount of lim-
ited data with the proposed model, while ‘Label Propagation II’
has more paired data for supervised learning. As this method
could not be trained with mismatch data, we mark with “-” in
the table. The results reveal that the label propagation approach
required more paired data to provide an improvement. Unfortu-
nately, the increase is still minimal. On the other hand, the pro-
posed MMC1 and MMC2 frameworks could give significantly
better performance for all components than the label propaga-
tion method could.

Among the proposed MMC1 and MMC2 frameworks, in
the low-resource scenario, MMC2, with its more compact ar-
chitecture using a single-loop mechanism, could mostly out-
perform MMC1 in all components except TTS. With a larger
dataset, the CER result of MMC2 saturated in an on-par perfor-
mance with MMC1. However, the BLEU score of MMC2 was
much higher than that in MMC1. This was because of the joint
use of image and speech as a multisource in the ImgSp2Txt
model. The inception scores for the IG task in MMC2 were en-
hanced and were better than the scores for the IG task in MMC1.
Interestingly, in both cases, ASR and TTS performance could
still be improved and maintained using the image-only dataset,
and IC and IG could even be improved using the speech-only
dataset.

5. Related Works
Approaches that use learning from source-to-target and vice-
versa as well as feedback links remain challenging. He et al.
[20] and Cheng et al. [21] proposed a mechanism called dual
learning in neural machine translation. In image processing,
several methods have also been proposed for unsupervised joint
distribution matching without any paired data, such as Disco-
GAN [22], CycleGAN [23], and DualGAN [24]. The frame-
work provides learning to translate an image from a source do-
main to a target domain without paired examples based on a
cycle-consistent adversarial network. Implementation on voice
conversion applications has also been investigated [25]. How-
ever, most of these works use only the same domain between

the source and the target.
The speech chain framework [2, 3, 4, 5] takes advantage

of the duality of speech and text modalities by constructing a
chain mechanism between ASR and TTS. For exploiting the
duality between images and text, Huang et al. (2018) proposed
turbo learning for joint training between image captioning and
image generation [26]. Recently, a multimodal machine chain
[6] was proposed to accommodate multimodalities and a loop
feedback mechanism. However, this work was only tested on
a synthesized single-speaker dataset. In addition, this work is
also unable to produce unseen images because the framework
relied on IR model which only retrieve existing images.

Specific to multimodal speech recognition tasks with deep
learning, there are extensive studies [27, 28, 29, 30] that have at-
tempted to combine both audio and visual information for bet-
ter ASR. However, these studies mainly focused on lip visual
information. Another work has addressed multimodality from
a different perspective: using visual information as contextual
information for a caption of something being spoken [15]. Un-
fortunately, this work was not implemented in an end-to-end
manner. In this study, we constructed a multimodal chain with
a single-loop and a dual-loop architecture that can be trained
with semi-supervised learning.

6. Conclusion
We developed several new improvements in a multimodal ma-
chine chain. First, we improved the multimodal chain, MMC1,
to handle unseen data better by incorporating an adversarial-
based image generation model and speaker embedding for man-
aging multispeaker variation. We also proposed an alternative
multimodal chain, MMC2, using a single-loop architecture with
a dual decoder and investigated the possibility of using audiovi-
sual information when available. Significant improvement for
all components was shown compared to the label generation
method. The results reveal that both the MMC1 and MMC2
frameworks enable speech processing components to improve
their performance when using an image-only dataset and im-
age processing components to enhance their performance when
using a speech-only dataset. For future work, we may further
investigate the various approaches of component combination,
not only for ImgSp2Txt but also for Txt2ImgSp.
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