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Abstract
Deep neural networks (DNN) have recently been widely used in
speaker recognition systems, achieving state-of-the-art perfor-
mance on various benchmarks. The x-vector architecture is es-
pecially popular in this research community, due to its excellent
performance and manageable computational complexity. In this
paper, we present the lrx-vector system, which is the low-rank
factorized version of the x-vector embedding network. The pri-
mary objective of this topology is to further reduce the memory
requirement of the speaker recognition system. We discuss the
deployment of knowledge distillation for training the lrx-vector
system and compare against low-rank factorization with SVD.
On the VOiCES 2019 far-field corpus we were able to reduce
the weights by 28% compared to the full-rank x-vector system
while keeping the recognition rate constant (1.83 % EER).
Index Terms: speaker recognition, x-vector, low power

1. Introduction
Speaker recognition systems have been popularized in con-
sumer devices such as smart phones and smart speakers, for ac-
cess control. This is achieved by generating a voice print from
the user’s speech during interaction with the device and com-
paring against an existing voice print. Voice prints are usually
generated by speaker embeddings of Deep Neural Networks
(DNNs), which can also be the underlying feature for diariza-
tion in multi-speaker meetings [1, 2]. DNNs have extensively
explored in the literature for the generation of speaker embed-
ding with different objective functions [3, 4, 5, 6]. The x-vector
system [3] emerged as a favorite in the research community, due
to its robust training, state-of-the-art performance and the avail-
ability of recipes in the popular Kaldi framework [7]. Our work
here is focused on the x-vector system.

Local inference provides a clear advantages over cloud so-
lution. Examples are: improved protection of user privacy,
lower recognition latency, or the autonomy from communica-
tions channels. Local inference has been previously addressed
for speech recognition [8] and spoken language understanding
[9]. The main challenges in local inference is the limited com-
pute and memory available on the device. Increasing these re-
quirements have adverse implications to cost and energy effi-
ciency of the device. The memory access operations during in-
ference is identified as a bottleneck for energy efficiency. In
this paper, we focus on reducing the memory footprint of an x-
vector-based speaker verification system. Furthermore, reduc-
tion in memory footprint will lead to lower cost for the device.

There is already a wealth of literature available the focus
on the compression of DNNs. Training DNNs with low-rank
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matrices jointly with the target objective is explored for vi-
sion and audio signals, previously. Novikov et al. [10] explore
low-rank factorization of neural networks using CIFAR-10 and
1000-class ImageNet ILSVRC-2012.Sak et al. [11] use low-
rank projection layers in Recurrent Neural Networks (RNN) for
speech recognition. A rank constrained DNN topology for key
word spotting is proposed by Nakkiran et al. [12]. Related
work to compression, HashNet uses a low-cost hash function to
randomly group weights into hash buckets. Chen et al. [13]
propose and compare this approach with low-rank networks.
Wu et al. [14] explore quantization of convolutional neural
networks and compares them with various alternatives includ-
ing Low-rank Decomposition and Approximation of Non-linear
Responses. An energy-efficient hardware accelerator using a
low-rank approximation is also proposed by Zhu et al. [15]
where inactive neurons are passed by. Sahraeian et al. [16]
explore low-rank factorization beyond compression aspects via
Singular Value Decomposition (SVD) of the weight matrices
to achieve sparse multilingual acoustic models. More general,
Dighe et al. [17] improve the acoustic model by training using
low-rank and sparse soft targets. Similar success was achieved
for Deep Gaussian Conditional Random Fields as explored by,
e.g., Chandra et al. [18]. Ding et al. [19] describe a struc-
tured low-rank constraint using domain-specific and domain-
invariant DNNs. Applying low-rank and low-rank plus diago-
nal matrix parametrization to RNNs is studied by Barone et al.
[20]. Sharan et al. [21] explore random projection for low-rank
tensor factorization and describe the use on gene expression and
EEG time series data. Zhang et al. [22] apply structural spar-
sification on Time-Delay Neural Networks (TDNN) to remove
redundant structures. Alternative approaches are subject to our
further research, e.g., binary neural networks as successfully
applied to natural language understanding [23].

In this paper, we proposed low-rank x-vector speaker em-
beddings by deploying knowledge distillation to the training
process. We call the resulting embedding lrx-vector. The paper
is organizes as follows: Section 2 describes the baseline speaker
recognition system, with details on the model topology and loss
function. In Section 3, we introduce the modified model topol-
ogy and the model training methodology using knowledge dis-
tillation. We present the results of our experiments in Section 4
and then conclude the paper in 5.

2. Baseline Speaker Embedding System
The x-vector embedding comprises two parts. First, the feature
sequence, i.e., mel-filter bank is processed by layers of TDNNs.
Second, a statistical pooling layer encodes a segment of speech
and computes the embedding vector by a feed forward network.
This architecture is illustrated in Figure 1.
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Figure 1: x-vector speaker embedding. The input sequence of
speech features at the top is processed by three TDNN layers.
A Statistical Pooling Layer is computed over a speech segment.
The Speaker embedding is finally compute by a FFN.

2.1. Model topology: x-vector

This work is based on the x-vector model structure proposed
by Snyder et al. [3], with some simplifications. Compared to
the original x-vector model, our architecture, shown on Table
1, uses an increased input feature dimension from 24 to 40, re-
duces the pooling dimension from 1500 to 512 and removes a
fully-connected layer between the embedding and speaker out-
put layer. We reduce the embedding dimension from 512 to 256.
In our testing, these modifications did not degrade the recogni-
tion performance and result in much lower complexity. We use
this topology as a baseline for comparing against the lrx-vector.

Table 1: Baseline x-vector configuration for a speech utterance
with T frames. Three TDNN, two FFN layer are processing the
input sequence. The embedding is computes by a FNN on top of
the statistical pooling layer.

layer context Affine
Layer1 [t-2,t+2] (5× 40)× 512
Layer2 {t-2,t,t+2} (3× 512)× 512
Layer3 {t-2,t,t+2} (3× 512)× 512
Layer4 {t} 512× 512
Layer5 {t} 512× 512

Stats pooling [0,T) N/A
Segment [0,T) 1024 × 256
Output [0,T) 256 × N

The output layer is only used during model training; for
speaker enrollment and verification, the embedding is taken
from the Segment-layer (see Table 1). One speaker embedding
is computed for an entire utterance, regardless of its length.
We use the length-normalized cosine distance of this 256-
dimension embedding vectors between enrollment and test ut-
terances to produce the speaker recognition score.

2.2. Loss function

While the conventional softmax loss works reasonably well
for training speaker embeddings, it is specifically designed for
classification, not verification tasks. Speaker recognition sys-
tems trained with softmax loss typically use PLDA [24] in the
backend to improve separation between speakers. The triplet
loss function, which is designed to reduce intra-speaker and in-
crease inter-speaker distance, has shown to be more effective for

speaker recognition [4]. Likewise, the end-to-end loss [5] has
better performance than softmax. The downside to these kinds
of losses is that the training infrastructure is significantly more
complex than one used for supervised learning with softmax. In
a prior study [6], we explored the use of several recently pro-
posed loss functions that were first introduced in face recogni-
tion research. These loss functions are drop-in replacements for
softmax. Thus, modification to training code is simple with lit-
tle overhead in training speed. We found Additive Margin Soft-
max (AM-softmax) [25] to perform best in the far-field test set,
and incorporating PLDA did not improve performance against
the simpler cosine distance. The elimination of the PLDA in
the inference pipeline makes the entire model easy to deploy to
target hardware, with the help of tools such as the Intel® Dis-
tribution of OpenVINOTM toolkit1.

3. Compact Speaker Embedding System
3.1. Model topology: lrx-vector

First, we analyze the vanilla TDNN layer, which we represent
by a feed forward network (FFN). The layer of the baseline
x-vector topology described in Section 2.1 processes the input
xt ∈ Rc×n at time t. It is a concatenation of c feature vectors
according to the layer context. For example, layer 2 of Table 1
is defined by following row:

layer context Affine
Layer2 {t-2,t,t+2} (3× 512)× 512

Here, c = 3 for layer context t−2, t, t+2 of features generated
from layer one at 3 time steps. Each input feature to this layer
has n = 512 dimensions. The overall TDNN output has m =
512 dimensions. The input sequence is shifted by one to process
the output for the next time step. The FFN representing the
TDNN layer with weight matrix W ∈ R(c×n)×m, but no bias
is defined as follows:

y = Φ(Wxt) (1)

where Φ a non linear activation function, i.e., ReLU in this pa-
per. The number of overall weights in a TDNN is c · n ·m. In
the lrx-vector embedding, the TDNN matrix described above is
replaced by two matrices Wa ∈ R(c×n)×k and Wb ∈ Rk×m.
The output of the TDNN layer is

y = Φ ((WaWb)xt) (2)

whereWa andWb are low-rank representations ofW with low-
rank constant 1 < k < n. The overall number of weights in a
low-rank TDNN layer is c · k · (n+m) which is significantly
smaller compared to vanilla TDNN layer when k is set properly.
The lrx-vector configuration is presented in Table 2.

Finally, less weights need to be stored in non volatile mem-
ory for lrx-vector system. On the other hand, the compute in-
creases which is most often not an issue on recent DSP plat-
forms including efficient matrix-matrix multiplication units.

3.2. Training

We have explored several different ways of training the lrx-
vector system:
1. Random initialization: The network is initialized by Py-

Torch’s default random initialization. It is trained in the
same way as the baseline x-vector system using the AM-
softmax loss described in Section 2.2.
1https://docs.openvinotoolkit.org/



Table 2: lrx-vector system configuration for a T-frame speech
utterance. Matrices of the four layers with most weights are
replaced by low rank matrices.

layer context Affine
Layer1 [t-2,t+2] (5× 40)× 512)
Layer2 {t-2,t,t+2} (3× 512)× k2, k2 × 512
Layer3 {t-2,t,t+2} (3× 512)× k3, k3 × 512
Layer4 {t} 512× k4, k4 × 512
Layer5 {t} 512× k5, k5 × 512

Stats pooling [0,T) N/A
Segment [0,T) 1024 × 256
Output [0,T) 256 × N

2. lrx-SVD0: A x-vector baseline system is trained, and singu-
lar value decomposition (SVD) is performed on the weight
matrices. For each layer, we keep a subset of the singular
values. It is similar to work done by Nakkiran et al [12].
The network is not trained any further after SVD.

3. lrx-SVDF : A network obtained from SVD0 is fine tuned us-
ing the baseline training system until convergence with low-
ered learning rate.

4. Knowledge distillation: This is a method of using a larger
teacher network to train a smaller student network to achieve
better performance than it is possible with the smaller net-
work alone. It has been successfully applied in computer
vision tasks [26]. We find the use of a well-trained full-rank
x-vector (i.e. the baseline system described in Section 2) as
the teacher to the lrx-vector being particularly effective. Our
model training procedure is modified with a loss function
combining contributions from knowledge distillation (KD)
and AM-softmax (AMS):

LKD, AMS = αLKD + (1− α)LAMS (3)

Here, LKD can be computed by Kullback Leibler diver-
gence (KLD), Mean Square Error (MSE) or Cosine Simi-
larity (COS). We will make these comparisons in the exper-
iments. Determining the weight α with, e.g., a grid search
is time and compute intensive. We partially circumvent this
by applying an idea derived from multi-task learning, previ-
ously proposed by Du et al. [27]. The KD loss gets mini-
mized as long as its gradient has non-negative cosine simi-
larity with the target gradient. The teacher is ignored, other-
wise. Hence, we minimize following equation with Gradient
Cosine Similarity (GCS) to train our speaker identification
lrx-vector embedding with α = 0.5:

LGCS, KD, AMS =

{
LKD, AMS cos (LKD, LAMS) > 0

LAMS otherwise
(4)

4. Experiments
Our systems were developed by using Voxceleb 1 and 2. The
proposed compact speaker identification system is evaluated us-
ing the Voxceleb 1 & 2 data set. The data is described by
McLaren et al. [28], Nagrani et al. [29], [30] as training data.
Evaluation was performed on the VOiCES challenge far-field
text-independent dataset [31]. The VOiCES development set
was used to optimize our system. We present results for the de-
velopment and evaluation sets using equal error rate (EER) and
minimum decision cost function (minDCF) metrics as defined
in the VOiCES challenge [32].

Figure 2: Singular Values of x-vector model matrices. The low-
rank constant is, e.g., k2 = k3 = 256 and k4 = k5 = 384.

Our training data is prepared by applying 4x data augmen-
tation. For each augmented speech file we convolve a randomly
chosen room impulse response (RIR) from 100 artificially gen-
erated by Pyroomacoustics [33] and 100 selected from Aachen
Impulse Response Database [34], then mixing in with randomly
chosen clips from Google’s Audioset under Creative Commons
[35]. The SNR for mixing was uniformly distributed between
0 and 18 dB. We extract 40-dimensional mel-filterbank features
from 25 ms frames with 15 ms overlap. The features are mean-
normalized on a 3-second sliding window.

Our system was developed using the PyTorch2 framework.
For the baseline system, we used an initial learning rate of 0.1
and decaying to a final learning rate of 0.0001 in 30 epochs of
the training data. Training with knowledge distillation and fine-
tuning started at lower learning rate of 0.01. A weight decay of
1e− 6 is used in all experiments. We trained all networks until
convergence was achieved. This took most often no longer than
20 epochs.

4.1. Low-Rank Factorization

An SVD is used to factorize the matrices of a previously trained
x-vector system Figure 2 shows the singular values for each
layer. We have empirically figured out that a low rank input
layer and low rank layers after the stats pooling significantly de-
creases the speaker identification accuracy. In contrast, Nakki-
ran el al. [12] use a low-rank first layer in key-word spotting,
successfully. In this paper, we set k2 = 0.5n2, k3 = 0.5n3 and
k3 = 0.75n3, k4 = 0.75n3 where n2, n3, n4 and n5 are the di-
mension of the input vectors to layer 2 to 4. It cannot be ruled
out that a full grid-search finds better choices for ki given a tar-
get number of overall weights in the lrx-vector. Automatically
determining optimal ki is subject to our further research.

Table 3 compares scaled full-rank x-vector to the randomly
initialized lrx-vector, lrx-SVD0 and lrx-SVDF. Note that we lin-
early scaled the output dimension of each layer in the x-vector
for all layer with the same constant factor before the stats pool-
ing, in order to obtain the same model size of 550k parameters
as in the lrx-vector. The results indicate that SVD, even with
fine-tuning, did not produce better results than random initial-
ization. Next, we focus the attention to another technique.

2https://pytorch.org/



Table 3: Factorization with Singular Value Decomposition
(SVD) compared to training from scratch

550k Dev Eval
weights EER minDCF EER minDCF
full rank 2.78 0.307 6.69 0.483

lrx-Random init 2.73 0.289 6.76 0.484
lrx-SVD0 3.23 0.335 7.39 0.539
lrx-SVDF 2.74 0.289 6.76 0.484

4.2. Training with Knowledge Distillation

For our research, we choose the teacher to be the baseline
system as described in Section 2. The EER and minDCF of
the teacher system in Table 4 is a strong baseline, competitive
with the top x-vector systems of comparable complexity in the
VOiCES Challenge [32]. We use this baseline system to teach
a student lrx-vector system with 550k weights, as described in
the previous section.

In the first set of results on Table 4, we present the exper-
iments using the standard KD learning objective from Eq. 3,
with α = 0.5. It can be seen that KD is generally an improve-
ment over random initialization or lrx-SVDF, with KD-MSE
performing best with relative EER improvement of 7.19% on
the development, and 5.68% on the evaluation sets. Although
this set of results is promising, it might be possible to improve
further by tuning α. Practically, doing this by grid search will
require long training time.

Table 4: Comparison of loss functions between teacher and stu-
dent at the example of the lrx-vector system with overall 550k
weights. The teacher is a baseline system with 4800k weights.

lrx-vector Dev Eval
550k weights EER minDCF EER minDCF

lrx-SVDF 2.74 0.289 6.76 0.484
KD-KLD 2.62 0.290 6.72 0.484
KD-MSE 2.58 0.270 6.31 0.452
KD-COS 2.67 0.273 6.37 0.456
Teacher 1.83 0.189 5.5 0.381

Table 5 shows the results of gradient cosine similarity as
described in Section 3.2. Here, we see that the best performance
is achieved with cosine similarity distillation loss, with relative
EER improvement of 11.15% for development and 3.74% for
evaluation sets over lrx-SVDF.

Table 5: Knowledge distillation with positive Gradient Cosine
Similarity between teacher and student. Otherwise, only Addi-
tive Margin Softmax speaker identification loss.

lrx-vector Dev Eval
550k weights EER MinDCF EER MinDCF

lrx-SVDF 2.74 0.289 6.76 0.484
KD-GCS-KLD 2.45 0.270 6.77 0.487
KD-GCS-MSE 2.42 0.272 6.49 0.470
KD-GCS-COS 2.47 0.266 6.44 0.458

Teacher 1.83 0.189 5.5 0.381

4.3. Scaling lrx-vector

Comparing x- and lrx-vector based speaker identification of dif-
ferent sizes at approximately the same EER is subject of this
evaluation section. The number of weights in the models were

Figure 3: Achieved Equal Error Rate (EER) on the development
set at different number of weights of X- and lrx-Vector Systems.

adjusted by changing the dimension of each hidden layers by
a multiplication factor < 1. This factor is the same for all
layers in the network up to the stats pooling layer. Automati-
cally determining Layer dependent factors is subject of future
research. lrx-vector as well as x-vector systems were trained
by knowledge distillation using KD-GCS-COS. We selected the
best models given the development set as similar in previous
sections. The results are shown in Table 6. A 2.1% EER was
achieved with an lrx-Vector system that requires to store 800k
weights in ROM. This is 73% of the size to a comparable x-
vector system that meets the same EER.

Table 6: Weigh reduction of lrx-vector system compared to x-
vector system that achieves same EER.

EER lrx-vector size
Dev % of x-vector equivalent #weights
4.5 100 134k
2.4 79 550k
2.1 73 800k
1.8 72 1540k

1.83 X-Vector Teacher with 4800k weights

Figure 3 illustrates the memory saving of lrx-vector systems
compared to x-vector systems at different number of weights.
As expected, there is no improvement over the teacher system
when the model is very large, i.e., when the model capacity hits
the upper bound of the task. Very small models do not benefit
from low rank matrices, too. What can be seen is an improve-
ment of the lrx-vector over the x-vector system at common op-
eration points of the system. In other words, our proposed lrx-
vector system shifts the operation point towards smaller models.

5. Conclusion
This paper addresses compact speaker identification by lrx-
vector embedding. We propose a low-rank version of the pop-
ular TDNN based x-vector embedding where big matrices are
replaced by low-rank matrices. We address one of the main bot-
tlenecks of low power inference in small edge devices, memory
access, by reducing the size of the model. Using the VOiCES
far-field test set, we achieved 28% reduction in the number of
parameters compared to the full size model, at the same EER
of 1.8%. The lrx-vector is also shown to achieve reduction in
model size compared to scaled-down x-vector, at comparable
EERs across a wide range of operating points. Future research
beyond this work can include other means of searching for best
knowledge distillation hyper-parameter α, and joint low-rank
and weight quantization optimizations.
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